首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
Saccharomyces cerevisiae served as a model fungal system to examine functional genomics of oxidative stress responses and reactions to test antioxidant compounds. Twenty-two strains of S. cerevisiae, including a broad spectrum of singular gene deletion mutants, were exposed to hydrogen peroxide (H2O2) to examine phenotypic response to oxidative stress. Responses of particular mutants treated with gallic, tannic or caffeic acids, or methyl gallate, during H2O2 exposure, indicated that these compounds alleviated oxidative stress. These compounds are also potent inhibitors of aflatoxin biosynthesis in Aspergillus flavus. To gain further insights into a potential link between oxidative stress and aflatoxin biosynthesis, 43 orthologs of S. cerevisiae genes involved in gene regulation, signal transduction (e.g., SHO1, HOG1, etc.) and antioxidation (e.g., CTT1, CTA1, etc.) were identified in an A. flavus expressed sequence tag library. A successful exemplary functional complementation of an antioxidative stress gene from A. flavus, mitochondrial superoxide dismutase (sodA), in a sod2 yeast mutant further supported the potential of S. cerevisiae deletion mutants to serve as a model system to study A. flavus. Use of this system to further examine functional genomics of oxidative stress in aflatoxigenesis and reduction of aflatoxin biosynthesis by antioxidants is discussed.  相似文献   

3.
Aflatoxins: Detection,toxicity, and biosynthesis   总被引:1,自引:0,他引:1  
Aflatoxins are toxic and carcinogenic secondary metabolites produced mainly byAspergillus flavus andAspergillus parasiticus. The aflatoxins present in food and feed are hazardous to both human and animal health. A number of studies have been conducted on the detection, toxicity, biosynthesis, and regulation of aflatoxins due to the discovery of serious aflatoxicosis in farm animals, and the presence of aflatoxins in many food products. There are many reviews that focus on the biosynthesis of aflatoxin, yet there are few examinations of the overall aspects of aflatoxins, including detection, toxicity, and the regulation on biosynthesis. Thus, the goal of this article is to give an overview of the overall aspects of aflatoxins. This review consists of four parts; i) detection methods for aflatoxins, ii) the toxicity mechanism of aflatoxin B1, iii) gene cluster for aflatoxin biosynthesis, and iv) the regulation of aflatoxin biosynthesis.  相似文献   

4.
5.
Aspergillus flavus is a pathogenic fungus that produces carcinogenic aflatoxins, posing a great threat to crops, animals and humans. Lysine acetylation is one of the most important reversible post-translational modifications and plays a vital regulatory role in various cellular processes. However, current information on the extent and function of lysine acetylation and aflatoxin biosynthesis in A. flavus is limited. Here, a global acetylome analysis of A. flavus was performed by peptide pre-fractionation, pan-acetylation antibody enrichment and liquid chromatography–mass spectrometry. A total of 1313 high-confidence acetylation sites in 727 acetylated proteins were identified in A. flavus. These acetylation proteins are widely involved in glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle and aflatoxin biosynthesis. AflO (O-methyltransferase), a key enzyme in aflatoxin biosynthesis, was found to be acetylated at K241 and K384. Deletion of aflO not only impaired conidial and sclerotial developments, but also dramatically suppressed aflatoxin production and pathogenicity of A. flavus. Further site-specific mutations showed that lysine acetylation of AflO could also result in defects in development, aflatoxin production and pathogenicity, suggesting that acetylation plays a vital role in the regulation of the enzymatic activity of AflO in A. flavus. Our findings provide evidence for the involvement of lysine acetylation in various biological processes in A. flavus and facilitating in the elucidation of metabolic networks.  相似文献   

6.
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.  相似文献   

7.
Ras subfamily proteins are molecular switches in signal transduction pathways of many eukaryotes that regulate a variety of cellular processes. Here, the Ras subfamily, encoded by six genes, was identified in Aspergillus flavus: rasA, rasB, rasC, rab-33, rheb and rsr1. The rsr1 deletion mutant (∆rsr1), rheb deletion mutant (∆rheb) and double deletion mutant (∆rheb/rsr1) displayed significantly decreased growth and sporulation. Sclerotia formation was significantly decreased for ∆rheb or ∆rheb/rsr1 but increased for ∆rsr1. Aflatoxin production was significantly increased in ∆rheb but decreased in ∆rsr1 and ∆rheb/rsr1. We found that rsr1 and rheb are crucial for the pathogenicity of A. flavus. Quantitative proteomics identified 520 differentially expressed proteins (DEPs) for the ∆rsr1 mutant and 133 DEPs for the ∆rheb mutant. These DEPs were annotated in multiple biological processes and KEGG pathways in A. flavus. Importantly, we identified the cytokinesis protein SepA in the protein–protein interaction network of rsr1, and deletion mutants showed that SepA has pleiotropic effects on growth and AF biosynthesis, which may depend on Rsr1 for regulation in A. flavus. Our results indicated that these Ras subfamily proteins exhibited functional redundancy with each other but there were also differences in A. flavus.  相似文献   

8.
The report presents a rapid, inexpensive and simple method for monitoring indels with influence on aflatoxin biosynthesis within Aspergillus flavus populations. PCR primers were developed for 32 markers spaced approximately every 5 kb from 20 kb proximal to the aflatoxin biosynthesis gene cluster to the telomere repeat. This region includes gene clusters required for biosynthesis of aflatoxins and cyclopiazonic acid; the resulting data were named cluster amplification patterns (CAPs). CAP markers are amplified in four multiplex PCRs, greatly reducing the cost and time to monitor indels within this region across populations. The method also provides a practical tool for characterizing intraspecific variability in A. flavus not captured with other methods.

Significance and Impact of the Study

Aflatoxins, potent naturally‐occurring carcinogens, cause significant agricultural problems. The most effective method for preventing contamination of crops with aflatoxins is through use of atoxigenic strains of Aspergillus flavus to alter the population structure of this species and reduce incidences of aflatoxin producers. Cluster amplification pattern (CAP) is a rapid multiplex PCR method for identifying and monitoring indels associated with atoxigenicity in A. flavus. Compared to previous techniques, the reported method allows for increased resolution, reduced cost, and greater speed in monitoring the stability of atoxigenic strains, incidences of indel mediated atoxigenicity and the structure of A. flavus populations.  相似文献   

9.
The effect of phytate on the production of aflatoxins by Aspergillus parasiticus and Aspergillus flavus grown on synthetic media was examined. In the absence of pH control (initial pH 4.5–6.5) for A. parasiticus, phytate (14.3 mM) caused a six-fold decrease in aflatoxins in the medium and a ten-fold decrease in those retained by the mycelia. When the initial pH of the medium was adjusted to 4.5 no effect on aflatoxin production was observed. With A. flavus or A. parasiticus grown on media with a higher initial pH value (6 to 7), the presence of phytate in the media caused an increase in aflatoxin production. These results are inconsistent with previous studies which indicated that phytate depresses aflatoxin production by rendering zinc, a necessary co-factor for aflatoxin biosynthesis, unavailable to the mold.  相似文献   

10.
Intraspecific competition is the basis for biological control of aflatoxins, but there is little understanding of the mechanism(s) by which competing strains inhibit toxin production. Evidence is presented that demonstrates a relationship between strength of the vegetative compatibility reaction and aflatoxin production in Aspergillus flavus and A. parasiticus using the suspended disk culture method. Combining wild-type aflatoxin-producing isolates belonging to different vegetative compatibility groups (VCGs) resulted in a substantial reduction in aflatoxin yield. Pairs of aflatoxin-producing isolates within the same VCG, but showing weak compatibility reactions using complementary nitrate-nonutilizing mutants, also were associated with reduced levels of aflatoxin B1. In contrast, pairings of isolates displaying a strong compatibility reaction typically produced high levels of aflatoxins. These results suggest that interactions between vegetatively compatible wild-type isolates of A. flavus and A. parasiticus are cooperative and result in more aflatoxin B1 than pairings between isolates that are incompatible. Successful hyphal fusions among spore germlings produce a common mycelial network with a larger resource base to support aflatoxin biosynthesis. By comparison, vegetative incompatibility reactions might result in the death of those heterokaryotic cells composed of incompatible nuclei and thereby disrupt the formation of mycelial networks at the expense of aflatoxin biosynthesis. The content of this paper was presented at the 50th Anniversary Meeting of the Mycological Society of Japan, June 3–4, 2006, Chiba, Japan  相似文献   

11.
The plant pathogenic fungus Aspergillus flavus produces several types of mycotoxins. The most well known are the carcinogenic compounds called aflatoxins. In addition, A. flavus produces cyclopiazonic acid and aflatrem mycotoxins, contributing to the toxicity of A. flavus infected crops. Cyclopiazonic acid is a specific inhibitor of calcium-dependent ATPase in the sarcoplasmic reticulum that results in altered cellular Ca++ levels. Aflatrem is a potent tremorgenic mycotoxin known to lead to neurological disorders. Previously we showed that a gene called veA controls aflatoxin and sclerotial production in A. parasiticus. In this study in A. flavus, we show that the veA homolog in A. flavus not only is necessary for the production of aflatoxins B1 and B2 and sclerotia, but also regulates the synthesis of the mycotoxins cyclopiazonic acid and aflatrem. The A. flavus ΔveA mutant was completely blocked in the production of aflatrem and showed greater than twofold decrease in cyclopiazonic acid production. The genes involved in the synthesis of cyclopiazonic acid are unknown; however, the aflatrem gene cluster has been characterized. Northern hybridization analysis showed that veA is required for expression of the A. flavus aflatrem genes atmC, atmG, and atmM. This is the first report of a regulatory gene governing the production of cyclopiazonic acid and aflatrem mycotoxins.  相似文献   

12.
Aims: The objectives of this study were to assess the genetic relationships between toxigenic and atoxigenic isolates of Aspergillus flavus collected from peanut fields in China, and to analyse deletions within the aflatoxin biosynthetic gene cluster for the atoxigenic isolates. Methods and Results: Analysis of random‐amplified polymorphic DNA and microsatellite‐primed PCR data showed that the toxigenic and atoxigenic isolates of A. flavus were not clustered based on their regions and their ability of aflatoxin and sclerotial production. These results were further supported by DNA sequence of ITS, pksA and omtA genes. PCR assays showed that 24 of 35 isolates containing no detectable aflatoxins had the entire aflatoxin gene cluster. Eleven atoxigenic isolates had five different deletion patterns in the cluster. Conclusions: Toxigenic and atoxigenic isolates of A. flavus are genetically similar, but some atoxigenic isolates having deletions within the aflatoxin gene cluster can be identified readily by PCR assays. Significance and Impact of the Study: Because the extensive deletions within the aflatoxin gene cluster are not rare in the atoxigenic isolates, analysis of deletion within the cluster would be an effective method for the rapid screening of atoxigenic isolates for developing biocontrol agents.  相似文献   

13.
Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize, and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins through competition with native aflatoxigenic populations. In this study, eight nontoxigenic strains of A. flavus belonging to different vegetative compatibility groups and differing in deletion patterns within the aflatoxin gene cluster were evaluated for their ability to reduce aflatoxin B1 when paired with eight aflatoxigenic strains on individual peanut seeds. Inoculation of wounded viable peanut seeds with conidia demonstrated that nontoxigenic strains differed in their ability to reduce aflatoxin B1. Reductions in aflatoxin B1 often exceeded expected reductions based on a 50:50 mixture of the two A. flavus strains, although one nontoxigenic strain significantly increased aflatoxin B1 when paired with an aflatoxigenic strain. Therefore, nontoxigenicity alone is insufficient for selecting a biocontrol agent and it is also necessary to test the effectiveness of a nontoxigenic strain against a variety of aflatoxigenic strains.  相似文献   

14.
Sharma  Yash Pal  Sumbali  Geeta 《Mycopathologia》2000,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 g/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore,monitoring of aflatoxins in dry fruit slices of quincesis recommended for this region.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus. Strains of A. flavus that are non-aflatoxigenic (i.e., incapable of secreting aflatoxins) have proven effective in controlling contamination by these aflatoxin producing species in the field. In the present study, a non-aflatoxigenic A. flavus strain, GD-3, was isolated from a peanut field in Guangdong Province, China. Polymerase chain reaction (PCR) analysis showed that 12 aflatoxin biosynthesis genes (aflT, pksA, nor-1, fas-2, fas-1, aflR, aflJ, adhA, estA, norA, ver-1 and verA) were deleted in GD-3. Co-inoculation with a toxigenic strain, GD-15, at the ratio of 1:10, 1:1 or 10:1 (GD-3:GD-15), showed that GD-3 was capable of reducing detectable aflatoxin levels on three different substrates. This reduction ranged from 33% to 99% and correlated with competitor ratio. These results demonstrated that GD-3 was successful at reducing aflatoxin contamination and showed promise as a potential agent of biocontrol for local farmers.  相似文献   

16.
As a pathogenic fungus, Aspergillus flavus can produce carcinogenic aflatoxins (AFs), which poses a great threat to crops and animals. Msb2, the signalling mucin protein, is a part of mitogen-activated protein kinase (MAPK) pathway which contributes to a range of physiological processes. In this study, the roles of membrane mucin Msb2 were explored in A. flavus by the application of gene disruption. The deletion of msb2 gene (Δmsb2) caused defects in vegetative growth, sporulation and sclerotia formation when compared to WT and complement strain (Δmsb2C) in A. flavus. Using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis, it was found that deletion of msb2 down-regulated aflatoxin B1 (AFB1) synthesis and decreased the infection capacity of A. flavus. Consistently, Msb2 responds to cell wall stress and osmotic stress by positively regulating the phosphorylation of MAP kinase. Notably, Δmsb2 mutant exhibited cell wall defect, and it was more sensitive to inhibitor caspofungin when compared to WT and Δmsb2C. Taking together, these results revealed that Msb2 plays key roles in morphological development process, stresses adaptation, secondary metabolism and pathogenicity in fungus A. flavus.  相似文献   

17.
It was initially shown that gallic acid, from hydrolysable tannins in the pelliele of walnut kernels, dramatically inhibits biosynthesis of aflatoxin byAspergillus flavus. The mechanism of this inhibition was found to take place upstream from the gene cluster, including the regulatory gene,aflR, involved in aflatoxin biosynthesis. Additional research using other antioxidant phenolics showed similar antiaflatoxigenic activity to gallic acid. Treatment ofA. flavus withtert-butyl hydroperoxide resulted in an almost doubling of aflatoxin biosynthesis compared to untreated samples. Thus, antioxidative response systems are potentially useful molecular targets for control ofA. flavus. A high throughput screening system was developed using yeast,Saccharomyces cerevisiae, as a model fungus. This screening provided an avenue to quickly identify fungal genes that were vulnerable to treatment by phenolic compounds. The assay also provided a means to quickly assess effects of combinations of phenolics and certain fungicides affecting mitochondrial respiration. For example, theS. cerevisiae sod2† mutant was highly sensitive to treatment by certain phenolics and strobilurins/antimycin A, fungicides which inhibit complex III of the mitochondrial respiratory chain. Verification of stress to this system in the target fungus,A. flavus, was shown through complementation analysis, wherein the mitochondrial superoxide dismutase (Mn-SOD) gene (sodA) ofA. flavus in the ortholog mutant,sod2†, ofS. cerevisiae, relieved phenolic-induced stress. Mitochondrial antioxidative stress systems play an important role in fungal response to antifungals. Combined treatment of fungi with phenolics and inhibitors of mitochondrial respiration can effectively suppress growth ofA. flavus in a synergistic fashion.  相似文献   

18.
WhyAspergillus species produce aflatoxin remains an unsolved question. In this report we suggest that evolution of the aflatoxin biosynthesis gene cluster has been a multistep process. More than 300 million years ago a primordial cluster of genes allowed production of anthraquinones that may have served as insect attractants to facilitate spore dispersal. Later adaptive evolutionary steps introduced genes into the cluster that encoded enzymes associated with fungal virulence. These genes may have allowed the otherwise saprophytic fungi to be better able to colonize living plants. Later, genes for production of aflatoxins B1 and G1 were added to the basal cluster. Loss of the ability to produce aflatoxin G1 occurred with the divergence ofA. flavus, a species that, perhaps, was more successful than its ancestors at colonizing plants. This logical progression in evolutionary development of the aflatoxin biosynthetic cluster fits the phylogenetic data as well as known chemical reactivity of the initially formed anthraquinone polyketide metabolites.  相似文献   

19.
20.
Cyclopiazonic acid (CPA), an indole-tetramic acid mycotoxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins. Aflatoxin biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. flavus lacking aflatoxin production due to the loss of the entire aflatoxin gene cluster and portions of the subtelomeric region are often unable to produce CPA, which suggests a physical link of genes involved in CPA biosynthesis to the aflatoxin gene cluster. Examining the subtelomeric region in A. flavus isolates of different chemotypes revealed a region possibly associated with CPA production. Disruption of three of the four genes present in this region predicted to encode a monoamine oxidase, a dimethylallyl tryptophan synthase, and a hybrid polyketide non-ribosomal peptide synthase abolished CPA production in an aflatoxigenic A. flavus strain. Therefore, some of the CPA biosynthesis genes are organized in a mini-gene cluster that is next to the aflatoxin gene cluster in A. flavus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号