首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reptiles are ectothermic amniotes in a world dominated by endotherms. Reptiles originated more than 300 million years ago and they often dwell in polluted environments which may expose them to pathogenic micro-organisms, radiation and/or heavy metals. Reptiles also possess greater longevity and may live much longer than similar-sized land mammals, for example, turtles, tortoises, crocodiles and tuatara are long-lived reptiles living up to 100 years or more. Many recent studies have emphasized the pivotal role of the gut microbiome on its host; thus, we postulated that reptilian gut microbiome and/or its metabolites and the interplay with their robust immune system may contribute to their longevity and overall hardiness. Herein, we discuss the composition of the reptilian gut microbiome, immune system–gut microbiome cross-talk, antimicrobial peptides, reptilian resistance to infectious diseases and cancer, ageing, as well the current knowledge of the genome and epigenome of these remarkable species. Preliminary studies have demonstrated that microbial gut flora of reptiles such as crocodiles, tortoises, water monitor lizard and python exhibit remarkable anticancer and antibacterial properties, as well as comprise novel gut bacterial metabolites and antimicrobial peptides. The underlying mechanisms between the gut microbiome and the immune system may hold clues to developing new therapies overall for health, and possible extrapolation to exploit the ancient defence systems of reptiles for Homo sapiens benefit.  相似文献   

2.
Uveitis (UVT), an inflammatory disease of the eye significantly contributes to vision impairment and blindness. Uveitis is associated with systemic infectious and autoimmune diseases, but in most cases, the aetiology remains unidentified. Dysbiosis in the gut microbiome has been implicated in autoimmune diseases, inflammatory diseases, cancers and mental disorders. In a mice model of autoimmune UVT, it was observed that manipulating the gut microbiome reduces the inflammation and disease severity. Further, alterations in the bacterial gut microbiome and their metabolites were reported in UVT patients from a Chinese cohort. Hence, it is worth comparing the bacterial gut microbiome of UVT patients with that of healthy controls (HC) to ascertain whether dysbiosis of the gut microbiome has implications in UVT. Our analyses showed reduced diversity of several anti-inflammatory organisms including Faecalibacterium, Bacteroides, Lachnospira, Ruminococcus and members of Lachnospiraceae and Ruminococcaceae families, and enrichment of Prevotella (proinflammatory) and Streptococcus (pathogenic) OTUs in UVT microbiomes compared to HC. In addition, decrease in probiotic and antibacterial organisms was observed in UVT compared to HC microbiomes. Heatmap and PCoA plots also indicated significant variations in the microbiomes of UVT versus HC. This is the first study demonstrating dysbiosis in the gut bacterial communities of UVT patients in an Indian cohort and suggests a role of the gut microbiome in the pathophysiology of UVT.  相似文献   

3.
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ‐free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well‐defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co‐metabolic products such as hippurate (urine) and 5‐aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo‐inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health‐care investigations.  相似文献   

4.
The gut-brain axis is increasingly recognized as an important pathway involved in cocaine use disorder. Microbial products of the murine gut have been shown to affect striatal gene expression, and depletion of the microbiome by antibiotic treatment alters cocaine-induced behavioral sensitization in C57BL/6J male mice. Some reports suggest that cocaine-induced behavioral sensitization is correlated with drug self-administration behavior in mice. Here, we profile the composition of the naïve microbiome and its response to cocaine sensitization in two collaborative cross (CC) strains. These strains display extremely divergent behavioral responses to cocaine sensitization. A high-responding strain, CC004/TauUncJ (CC04), has a gut microbiome that contains a greater amount of Lactobacillus than the cocaine-nonresponsive strain CC041/TauUncJ (CC41). The gut microbiome of CC41 is characterized by an abundance of Eisenbergella, Robinsonella and Ruminococcus. In response to cocaine, CC04 has an increased Barnsiella population, while the gut microbiome of CC41 displays no significant changes. PICRUSt functional analysis of the functional potential of the gut microbiome in CC04 shows a significant number of potential gut-brain modules altered after exposure to cocaine, specifically those encoding for tryptophan synthesis, glutamine metabolism, and menaquinone synthesis (vitamin K2). Depletion of the microbiome by antibiotic treatment revealed an altered cocaine-sensitization response following antibiotics in female CC04 mice. Depleting the microbiome by antibiotic treatment in males revealed increased infusions for CC04 during a cocaine intravenous self-administration dose–response curve. Together these data suggest that genetic differences in cocaine-related behaviors may involve the microbiome.  相似文献   

5.
叶际微生物组对植物的生长发育至关重要,但植物与其定殖微生物组相互作用机制尚不明确。目前植物与微生物互作研究多集中于根际微生物组,对叶际微生物组的研究较少,且这些研究未能从微生物互作的角度探究植物与微生物的相互作用机理。基于网络作图理论,将拟南芥基因组SNP (Single Nucleotide Polymorphisms)分子标记数据与微生物组网络特征值相关联,挖掘影响叶际微生物组网络结构的枢纽基因,以探究拟南芥塑造叶际微生物组网络结构的遗传机制。通过对188株拟南芥及其叶际微生物组数据的分析,识别出四种关系下的中心节点微生物,筛选到622个显著SNP位点。进一步构建了贝叶斯遗传网络,获得26个枢纽基因,这些基因可能参与了植物抗病、激素分泌和生长发育相关的分子途径。本研究从全基因组角度探究植物调控自身微生物组的遗传机制,揭示植物与微生物组如何互作促进植物健康,将为精准分子育种提供理论基础和遗传资源,并为合成菌群用于创制新型菌剂提供数据支持,具有重要的科学意义和应用价值。  相似文献   

6.
Neotropical wood‐eating catfishes (family Loricariidae) can occur in diverse assemblages with multiple genera and species feeding on the same woody detritus. As such, they present an intriguing system in which to examine the influence of host species identity on the vertebrate gut microbiome as well as to determine the potential role of gut bacteria in wood digestion. We characterized the gut microbiome of two co‐occurring catfish genera and four species: Panaqolus albomaculatus, Panaqolus gnomus, Panaqolus nocturnus, and Panaque bathyphilus, as well as that of submerged wood on which they feed. The gut bacterial community did not significantly vary across three gut regions (proximal, mid, distal) for any catfish species, although interspecific variation in the gut microbiome was significant, with magnitude of interspecific difference generally reflecting host phylogenetic proximity. Further, the gut microbiome of each species was significantly different to that present on the submerged wood. Inferring the genomic potential of the gut microbiome revealed that the majority of wood digesting pathways were at best equivalent to and more often depleted or nonexistent within the catfish gut compared to the submerged wood, suggesting a minimal role for the gut microbiome in wood digestion. Rather, these fishes are more likely reliant on fiber degradation performed by microbes in the environment, with their gut microbiome determined more by host identity and phylogenetic history.  相似文献   

7.
Variation of maternal gut microbiota may increase the risk of autism spectrum disorders(ASDs) in offspring. Animal studies have indicated that maternal gut microbiota is related to neurodevelopmental abnormalities in mouse offspring, while it is unclear whether there is a correlation between gut microbiota of ASD children and their mothers. We examined the relationships between gut microbiome profiles of ASD children and those of their mothers, and evaluated the clinical discriminatory power of discovered bacterial biomarkers. Gut microbiome was profiled and evaluated by 16S ribosomal RNA gene sequencing in stool samples of 59 mother–child pairs of ASD children and 30 matched mother–child pairs of healthy children. Significant differences were observed in the gut microbiome composition between ASD and healthy children in our Chinese cohort. Several unique bacterial biomarkers, such as Alcaligenaceae and Acinetobacter, were identified. Mothers of ASD children had more Proteobacteria, Alphaproteobacteria, Moraxellaceae, and Acinetobacter than mothers of healthy children. There was a clear correlation between gut microbiome profiles of children and their mothers; however, children with ASD still had unique bacterial biomarkers, such as Alcaligenaceae, Enterobacteriaceae, and Clostridium. Candidate biomarkers discovered in this study had remarkable discriminatory power. The identified patterns of mother–child gut microbiome profiles may be important for assessing risks during the early stage and planning of personalized treatment and prevention of ASD via microbiota modulation.  相似文献   

8.
9.
We developed a laboratory rearing method for huhu grubs, Prionoplus reticularis White (Coleoptera: Cerambycidae), on defined cellulose (cotton) and lignocellulose (pine) diets. Huhu grubs were shown to both gain weight and eventually undergo metamorphosis on these diets, two indications of successful use of the substrates for healthy growth. Since insects typically rely on their gut microbiome to assist in nutrient assimilation this rearing method was used to study the gut microbiome of P. reticularis, using the frass produced as a proxy for the gut contents. In this preliminary study patterns of fungal community diversity in frass suggest that their composition is significantly influenced by diet; however, the influence of diet on bacterial community diversity was less clear. Results do demonstrate the potential of the experimental model for studying shifts in the gut microbiome induced by diet change. This approach could prove essential in identifying microorganisms, or consortia, involved in the breakdown of lignocellulose.  相似文献   

10.
Carrion beetles, Nicrophorus vespilloides, are reared on decomposing carrion where larvae are exposed to high populations of carcass‐derived bacteria. Larvae do not become colonized with these bacteria but instead are colonized with the gut microbiome of their parents, suggesting that bacteria in the beetle microbiome outcompete the carcass‐derived species for larval colonization. Here, we test this hypothesis and quantify the fitness consequences of colonization with different bacterial symbionts. First, we show that beetles colonized by their endogenous microbiome produce heavier broods than those colonized with carcass‐bacteria. Next, we show that bacteria from the endogenous microbiome, including Providencia rettgeri and Morganella morganii, are better colonizers of the beetle gut and can outcompete nonendogenous species, including Serratia marcescens and Escherichia coli, during in vivo competition. Finally, we find that Providencia and Morganella provide beetles with colonization resistance against Serratia and thereby reduce Serratia‐induced larval mortality. This effect is eliminated in larvae first colonized by Serratia, suggesting that while competition within the larval gut is determined by priority effects, these effects are less important for Serratia‐induced mortality. Our work suggests that an unappreciated benefit of parental care in N. vespilloides is the social transmission of the microbiome from parents to offspring.  相似文献   

11.
The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant (Loxodonta africana) and the African forest elephant (Loxodonta cyclotis), sister taxa separated by 2.6–5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop‐raiding versus noncrop‐raiding) on the microbiome within L. africana. We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of L. africana was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of L. cyclotis was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.  相似文献   

12.
The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high‐throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies.  相似文献   

13.
Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free‐ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free‐ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease‐associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management.  相似文献   

14.
Understanding the principles of colonization resistance of the gut microbiome to the pathogen Clostridioides difficile will enable the design of defined bacterial therapeutics. We investigate the ecological principles of community resistance to C. difficile using a synthetic human gut microbiome. Using a dynamic computational model, we demonstrate that C. difficile receives the largest number and magnitude of incoming negative interactions. Our results show that C. difficile is in a unique class of species that display a strong negative dependence between growth and species richness. We identify molecular mechanisms of inhibition including acidification of the environment and competition over resources. We demonstrate that Clostridium hiranonis strongly inhibits C. difficile partially via resource competition. Increasing the initial density of C. difficile can increase its abundance in the assembled community, but community context determines the maximum achievable C. difficile abundance. Our work suggests that the C. difficile inhibitory potential of defined bacterial therapeutics can be optimized by designing communities featuring a combination of mechanisms including species richness, environment acidification, and resource competition.  相似文献   

15.
Use of huge amounts of antibiotics in farm animal production has promoted the prevalence of antibiotic-resistant bacteria, which poses a serious threat to public health. Therefore, alternative approaches are needed to reduce or replace antibiotic usage in the food animal industry. PR-39 is a pig-derived proline-rich antimicrobial peptide that has a broad spectrum of antibacterial activity and a low propensity for development of resistance by microorganisms. To test whether ubiquitous expression of PR-39 in transgenic (TG) mice can increase resistance against bacterial infection, we generated TG mice that ubiquitously express a pig-derived antimicrobial peptide PR-39 and analyzed their growth and resistance to infection of the highly pathogenic Actinobacillus pleuropneumoniae (APP) isolated from swine. The growth performance was significantly increased in TG mice compared with their wild-type (WT) littermates. After the APP challenge, TG mice exhibited a significantly higher survival rate and significantly lower tissue bacterial load than WT littermates. Furthermore, the tissue lesion severity that resulted from APP infection was milder in TG mice than that in their WT littermates. This study provides a good foundation for the development of PR-39-expressing TG animals, which could reduce the use of antibiotics in the farm animal industry.  相似文献   

16.
Microbial communities, associated with almost all metazoans, can be inherited from the environment. Although the honeybee (Apis mellifera L.) gut microbiome is well documented, studies of the gut focus on just a small component of the bee microbiome. Other key areas such as the comb, propolis, honey, and stored pollen (bee bread) are poorly understood. Furthermore, little is known about the relationship between the pollinator microbiome and its environment. Here we present a study of the bee bread microbiome and its relationship with land use. We estimated bacterial community composition using both Illumina MiSeq DNA sequencing and denaturing gradient gel electrophoresis (DGGE). Illumina was used to gain a deeper understanding of precise species diversity across samples. DGGE was used on a larger number of samples where the costs of MiSeq had become prohibitive and therefore allowed us to study a greater number of bee breads across broader geographical axes. The former demonstrates bee bread comprises, on average, 13 distinct bacterial phyla; Bacteroidetes, Firmicutes, Alpha‐proteobacteria, Beta‐proteobacteria, and Gamma‐proteobacteria were the five most abundant. The most common genera were Pseudomonas, Arsenophonus, Lactobacillus, Erwinia, and Acinetobacter. DGGE data show bacterial community composition and diversity varied spatially and temporally both within and between hives. Land use data were obtained from the 2007 Countryside Survey. Certain habitats, such as improved grasslands, are associated with low diversity bee breads, meaning that these environments may be poor sources of bee‐associated bacteria. Decreased bee bread bacterial diversity may result in reduced function within hives. Although the dispersal of microbes is ubiquitous, this study has demonstrated landscape‐level effects on microbial community composition.  相似文献   

17.
Coptotermes curvignathus Holmgren is capable of feeding on living trees. This ability is attributed to their effective digestive system that is furnished by the termite's own cellulolytic enzymes and cooperative enzymes produced by their gut microbes. In this study, the identity of an array of diverse microbes residing in the gut of C. curvignathus was revealed by sequencing the near‐full‐length 16S rRNA genes. A total of 154 bacterial phylotypes were found. The Bacteroidetes was the most abundant phylum and accounted for about 65% of the gut microbial profile. This is followed by Firmicutes, Actinobacteria, Spirochetes, Proteobacteria, TM7, Deferribacteres, Planctomycetes, Verrucomicrobia, and Termite Group 1. Based on the phylogenetic study, this symbiosis can be a result of long coevolution of gut enterotypes with the phylogenic distribution, strong selection pressure in the gut, and other speculative pressures that determine bacterial biome to follow. The phylogenetic distribution of cloned rRNA genes in the bacterial domain that was considerably different from other termite reflects the strong selection pressures in the gut where a proportional composition of gut microbiome of C. curvignathus has established. The selection pressures could be linked to the unique diet preference of C. curvignathus that profoundly feeds on living trees. The delicate gut microbiome composition may provide available nutrients to the host as well as potential protection against opportunistic pathogen.  相似文献   

18.
Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of T1D by changing the gut microbiome.  相似文献   

19.
Body mass is a strong predictor of diet and nutritional requirements across a wide range of mammalian taxa. In the case of small‐bodied primates, because of their limited gut volume, rapid food passage rate, and high metabolic rate, they are hypothesized to maintain high digestive efficiency by exploiting foods rich in protein, fats, and readily available energy. However, our understanding of the dietary requirements of wild primates is limited because little is known concerning the contributions of their gut microbiome to the breakdown and assimilation of macronutrients and energy. To study how the gut microbiome contributes to the feeding ecology of a small‐bodied primate, we analyzed the fecal microbiome composition and metabolome of 22 wild saddleback tamarins (adult body mass 360–390 g) in Northern Bolivia. Samples were analyzed using high‐throughput Illumina sequencing of the 16 S rRNA gene V3‐V5 regions, coupled with GC‐MS metabolomic profiling. Our analysis revealed that the distal microbiome of Leontocebus weddelli is largely dominated by two main bacterial genera: Xylanibacter and Hallella (34.7 ± 14.7 and 22.6 ± 12.4%, respectively). A predictive analysis of functions likely carried out by bacteria in the tamarin gut demonstrated the dominance of membrane transport systems and carbohydrate metabolism as the predominant metabolic pathways. Moreover, given a fecal metabolome composed mainly of glucose, fructose, and lactic acid (21.7 ± 15.9%, 16.5 ± 10.7%, and 6.8 ± 5.5%, respectively), the processing of highly fermentable carbohydrates appears to play a central role in the nutritional ecology of these small‐bodied primates. Finally, the results also show a potential influence of environmentally‐derived bacteria in colonizing the tamarin gut. These results indicate high energetic turnover in the distal gut of Weddell's saddleback tamarin, likely influenced by dominant bacterial taxa that facilitate dietary dependence on highly digestible carbohydrates present in nectar, plant exudates, and ripe fruits.  相似文献   

20.
A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132T and B. longum JCM1217T) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号