首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To understand the folding mechanism of a protein is one of the goals in bioinformatics study. Nowadays, it is enigmatic and difficult to extract folding information from amino acid sequence using standard bioinformatics techniques or even experimental protocols which can be time consuming. To overcome these problems, we aim to extract the initial folding unit for titin protein (Ig and fnIII domains) by means of inter-residue average distance statistics, Average Distance Map (ADM) and contact frequency analysis (F-value). TI I27 and TNfn3 domains are used to represent the Ig-domain and fnIII-domain, respectively. Beta-strands 2, 3, 5, and 6 are significant for the initial folding processes of TI I27. The central strands of TNfn3 were predicted as a primary folding segment. Known 3D structure and unknown 3D structure domains were investigated by structure or non-structure based multiple sequence alignment, respectively, to learn the conserved hydrophobic residues and predicted compact region relevant to evolution. Our results show good correspondence to experimental data, phi-value and protection factor from H-D exchange experiments. The significance of conserved hydrophobic residues near F-value peaks for structural stability using hydrophobic packing is confirmed. Our prediction methods once again could extract a folding mechanism only knowing the amino acid sequence.  相似文献   

2.
Models of protein energetics that neglect interactions between amino acids that are not adjacent in the native state, such as the Gō model, encode or underlie many influential ideas on protein folding. Implicit in this simplification is a crucial assumption that has never been critically evaluated in a broad context: Detailed mechanisms of protein folding are not biased by nonnative contacts, typically argued to be a consequence of sequence design and/or topology. Here we present, using computer simulations of a well-studied lattice heteropolymer model, the first systematic test of this oft-assumed correspondence over the statistically significant range of hundreds of thousands of amino acid sequences that fold to the same native structure. Contrary to previous conjectures, we find a multiplicity of folding mechanisms, suggesting that Gō-like models cannot be justified by considerations of topology alone. Instead, we find that the crucial factor in discriminating among topological pathways is the heterogeneity of native contact energies: The order in which native contacts accumulate is profoundly insensitive to omission of nonnative interactions, provided that native contact heterogeneity is retained. This robustness holds over a surprisingly wide range of folding rates for our designed sequences. Mirroring predictions based on the principle of minimum frustration, fast-folding sequences match their Gō-like counterparts in both topological mechanism and transit times. Less optimized sequences dwell much longer in the unfolded state and/or off-pathway intermediates than do Gō-like models. For dynamics that bridge unfolded and unfolded states, however, even slow folders exhibit topological mechanisms and transit times nearly identical with those of their Gō-like counterparts. Our results do not imply a direct correspondence between folding trajectories of Gō-like models and those of real proteins, but they do help to clarify key topological and energetic assumptions that are commonly used to justify such caricatures.  相似文献   

3.
To investigate the relationships between protein topology, amino acid sequence and folding mechanisms, the folding transition state of the Sso7d protein has been characterised both experimentally and theoretically. Although Sso7d protein has a similar topology to that of the SH3 domains, the structure of its transition state is different from that of alpha-spectrin and src SH3 domains previously studied. The folding algorithm, Fold-X, including an energy function with specific sequence features, accounts for these differences and reproduces with a good agreement the set of experimental phi(double dagger-U) values obtained for the three proteins. Our analysis shows that taking into account sequence features underlying protein topology is critical for an accurate prediction of the folding process.  相似文献   

4.
5.
6.
Comparison of the folding mechanisms of proteins with similar structures but very different sequences can provide fundamental insights into the determinants of protein folding mechanisms. Despite very little sequence similarity, the approximately 60 residue IgG binding domains of protein G and protein L both consist of a single helix packed against a four-stranded sheet formed by two symmetrically disposed beta-hairpins. We demonstrate that, as in the case of protein L, one of the two beta-turns of protein G is formed and the other disrupted in the folding transition state. Unlike protein L, however, in protein G it is the second beta-turn that is formed in the folding transition state ensemble. Substitution of an Asp residue by Ala in protein G that eliminates an i,i+2 side chain-main chain hydrogen bond in the second beta-turn slows the folding rate approximately 20-fold but has virtually no effect on the unfolding rate. Taken together with previous results, these findings suggest that the presence of an intact beta-turn in the folding transition state is a consequence of the overall topology of protein L and protein G, but the particular hairpin that is formed is determined by the detailed interatomic interactions that determine the free energies of formation of the isolated beta-hairpins.  相似文献   

7.
We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted beta-1 and beta-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third beta-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.  相似文献   

8.
Ganguly D  Chen J 《Proteins》2011,79(4):1251-1266
Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general.  相似文献   

9.
To identify the contacts that stabilise the rate-limiting transition state for folding of FNfn10 (the tenth fnIII domain of human fibronectin), 42 mutants have been analysed at 29 positions across this domain. An anomalous response to mutation means that structure formation in the A, B and G strands cannot be evaluated by this method. In all the residues analysed, phi-values are fractional and no completely structured region is observed. The analysis reveals that hydrophobic residues from the central strands of the beta-sandwich form a large core of interactions in the transition state. Br?nsted analysis shows that the stabilisation energy from the amino acid side-chains in the transition state is approximately 40 % of that in the native state. The protein folds by a nucleation-condensation mechanism, and tertiary interactions within the core make up the folding nucleus. Local interactions, in turns and loops, are apparently much less significant. Comparison with an homologous domain from human tenascin (TNfn3), shows that FNfn10 has a more extended, structured transition state spanning three different "layers" of the beta-sandwich. The results support the hypothesis that interactions in the common structural core guide the folding of these domains.  相似文献   

10.
The SH3 domain folding transition state structure contains two well-ordered turn regions, known as the diverging turn and the distal loop. In the Src SH3 domain transition state, these regions are stabilized by a hydrogen bond between Glu30 in the diverging turn and Ser47 in the distal loop. We have examined the effects on folding kinetics of amino acid substitutions at the homologous positions (Glu24 and Ser41) in the Fyn SH3 domain. In contrast to most other folding kinetics studies which have focused primarily on non-disruptive substitutions with Ala or Gly, here we have examined the effects of substitutions with diverse amino acid residues. Using this approach, we demonstrate that the transition state structure is generally tolerant to amino acid substitutions. We also uncover a unique role for Ser at position 41 in facilitating folding of the distal loop, which can only be replicated by Asp at the same position. Both these residues appear to accelerate folding through the formation of short-range side-chain to backbone hydrogen bonds. The folding of the diverging turn region is shown to be driven primarily by local interactions. The diverging turn and distal loop regions are found to interact in the transition state structure, but only in the context of particular mutant backgrounds. This work demonstrates that studying the effects of a variety of amino acid substitutions on protein folding kinetics can provide unique insights into folding mechanisms which cannot be obtained by standard Phi value analysis.  相似文献   

11.
Qin M  Zhang J  Wang W 《Biophysical journal》2006,90(1):272-286
Tendamistat, a small disulfide-bonded beta-sheet protein, and its three single/double-disulfide mutants are investigated by using a modified Gō-like model, aiming to understand the folding mechanism of disulfide-bonded protein as well as the effects of removal of disulfide bond on the folding process. Our simulations show that tendamistat and its two single-disulfide mutants are all two-state folders, consistent with the experimental observations. It is found that the disulfide bonds as well as three hydrogen bonds between the N-terminal loop-0 and strand-6 are of significant importance for the folding of tendamistat. Without these interactions, their two-state behaviors become unstable and the predictions of the model are inconsistent with experiments. In addition, the effect of disulfide bonds on the folding process are studied by comparing the wild-type tendamistat and its two mutants; it is found that the removal of either of the C11-C27 or C45-C73 disulfide bond leads to a large decrease in the thermodynamical stability and loss of structure in the unfolded state, and the effect of the former is stronger than that of the later. These simulation results are in good agreement with experiments and, thus, validate our model. Based on the same model, the detailed folding pathways of the wild-type tendamistat and two mutants are studied, and the effect of disulfide bonds on the folding kinetics are discussed. The obtained results provide a detailed folding picture of these proteins and complement experimental findings. Finally, the folding nuclei predicted to be existent in this protein tendamistat as well as its mutants are firstly identified in this work. The positions of the nucleus are consistent with those argued in experimental studies. Therefore, a nucleation/growth folding mechanism that can explain the two-state folding manner is clearly characterized. Moreover, the effect by the removal of each disulfide bond on the folding thermodynamics and dynamics can also be well interpreted from their influence on the folding nucleus. The implementation of this work indicates that the modified Gō-like model really describes the folding behavior of protein tendamistat and could be used to study the folding of other disulfide-bonded proteins.  相似文献   

12.
Native state topology has been implicated as a major determinant of protein-folding mechanisms. Here, we test experimentally the robustness of the src SH3-domain folding transition state to changes in topology by covalently constraining regions of the protein with disulfide crosslinks and then performing kinetic analysis on point mutations in the context of these modified proteins. Circularization (crosslinking the N and C termini) of the src SH3 domain makes the protein topologically symmetric and causes delocalization of structure in the transition state ensemble suggesting a change in the folding mechanism. In contrast, crosslinking a single structural element (the distal beta-hairpin) which is an essential part of the transition state, results in a protein that folds 30 times faster, but does not change the distribution of structure in the transition state. As the transition states of distantly related SH3 domains were previously found to be very similar, we conclude that the free energy landscape of this protein family contains deep features which are relatively insensitive to sequence variations but can be altered by changes in topology.  相似文献   

13.
Deciphering the code that determines the three-dimensional structure of proteins and the ability to predict the final folded form of a protein is still elusive to molecular biophysists. In the case of several proteins a similar tertiary structure is not accompanied by any significant sequence similarity. The question now remains whether a code beyond the genetic code that describes the arrangement of the amino acid within a three dimensional protein structure. The available data undoubtedly demonstrates that the redundancy of this code must be tremendous. Several techniques such as nuclear magnetic resonance spectroscopy and laser detection techniques, coupled with fast initiation of the folding reaction, can now probe the folding events in milliseconds or even faster and provide highly relevant information. The thermodynamic analysis of the folding process and of kinetic intermediates opens whole new avenue of understanding. Breaking the protein folding code would enable scientists to look at a gene whose function is unknown and predict the three-dimensional structure of the protein it encodes. This would give them a very good idea of what the gene does. In this review we hope to bring together the information available about protein folding with particular emphasis on folding intermediate(s). Additionally, the practical consequences of the solution of the protein folding problem in medicine and biotechnology are also discussed.  相似文献   

14.
15.
Alexander PA  Rozak DA  Orban J  Bryan PN 《Biochemistry》2005,44(43):14045-14054
To better understand how amino acid sequences specify unique tertiary folds, we have used random mutagenesis and phage display selection to evolve proteins with a high degree of sequence identity but different tertiary structures (homologous heteromorphs). The starting proteins in this evolutionary process were the IgG binding domains of streptococcal protein G (G(B)) and staphylococcal protein A (A(B)). These nonhomologous domains are similar in size and function but have different folds. G(B) has an alpha/beta fold, and A(B) is a three-helix bundle (3-alpha). IgG binding function is used to select for mutant proteins which retain the correct tertiary structure as the level of sequence identity is increased. A detailed thermodynamic analysis of the folding reactions and binding reactions for a pair of homologous heteromorphs (59% identical) is presented. High-resolution NMR structures of the pair are presented by He et al. [(2005) Biochemistry 44, 14055-14061]. Because the homologous but heteromorphic proteins are identical at most positions in their sequence, their essential folding signals must reside in the positions of nonidentity. Further, the thermodynamic linkage between folding and binding is used to assess the propensity of one sequence to adopt two unique folds.  相似文献   

16.
17.
The amino acid sequence of a polypeptide defines both the folding pathway and the final three-dimensional structure of a protein. Eighteen amino acid substitutions have been identified in bacteriophage P22 coat protein that are defective in folding and cause their folding intermediates to be substrates for GroEL and GroES. These temperature-sensitive folding (tsf) substitutions identify amino acids that are critical for directing the folding of coat protein. Additional amino acid residues that are critical to the folding process of P22 coat protein were identified by isolating second site suppressors of the tsf coat proteins. Suppressor substitutions isolated from the phage carrying the tsf coat protein substitutions included global suppressors, which are substitutions capable of alleviating the folding defects of numerous tsf coat protein mutants. In addition, potential global and site-specific suppressors were isolated, as well as a group of same site amino acid substitutions that had a less severe phenotype than the tsf parent. The global suppressors were located at positions 163, 166, and 170 in the coat protein sequence and were 8-190 amino acid residues away from the tsf parent. Although the folding of coat proteins with tsf amino acid substitutions was improved by the global suppressor substitutions, GroEL remained necessary for folding. Therefore, we believe that the global suppressor sites identify a region that is critical to the folding of coat protein.  相似文献   

18.
The cytokine, interleukin-1beta (IL-1beta), adopts a beta-trefoil fold. It is known to be much slower folding than similarly sized proteins, despite having a low contact order. Proteins are sufficiently well designed that their folding is not dominated by local energetic traps. Therefore, protein models that encode only the folded structure and are energetically unfrustrated (Gō-type), can capture the essentials of the folding routes. We investigate the folding thermodynamics of IL-1beta using such a model and molecular dynamics (MD) simulations. We develop an enhanced sampling technique (a modified multicanonical method) to overcome the sampling problem caused by the slow folding. We find that IL-1beta has a broad and high free energy barrier. In addition, the protein fold causes intermediate unfolding and refolding of some native contacts within the protein along the folding trajectory. This "backtracking" occurs around the barrier region. Complex folds like the beta-trefoil fold and functional loops like the beta-bulge of IL-1beta can make some of the configuration space unavailable to the protein and cause topological frustration.  相似文献   

19.
Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of trinucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms.  相似文献   

20.
The structure of the transition state for folding/unfolding of the immunophilin FKBP12 has been characterised using a combination of protein engineering techniques, unfolding kinetics, and molecular dynamics simulations. A total of 34 mutations were made at sites throughout the protein to probe the extent of secondary and tertiary structure in the transition state. The transition state for folding is compact compared with the unfolded state, with an approximately 30 % increase in the native solvent-accessible surface area. All of the interactions are substantially weaker in the transition state, as probed by both experiment and molecular dynamics simulations. In contrast to some other proteins of this size, no element of structure is fully formed in the transition state; instead, the transition state is similar to that found for smaller, single-domain proteins, such as chymotrypsin inhibitor 2 and the SH3 domain from alpha-spectrin. For FKBP12, the central three strands of the beta-sheet, beta-strand 2, beta-strand 4 and beta-strand 5, comprise the most structured region of the transition state. In particular Val101, which is one of the most highly buried residues and located in the middle of the central beta-strand, makes approximately 60 % of its native interactions. The outer beta-strands and the ends of the central beta-strands are formed to a lesser degree. The short alpha-helix is largely unstructured in the transition state, as are the loops. The data are consistent with a nucleation-condensation model of folding, the nucleus of which is formed by side-chains within beta-strands 2, 4 and 5, and the C terminus of the alpha-helix. The precise residues involved in the nucleus differ in the two simulated transition state ensembles, but the interacting regions of the protein are conserved. These residues are distant in the primary sequence, demonstrating the importance of tertiary interactions in the transition state. The two independently derived transition state ensembles are structurally similar, which is consistent with a Bronsted analysis confirming that the transition state is an ensemble of states close in structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号