首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stearoyl‐CoA desaturase (delta‐9‐desaturase) gene encodes a key enzyme in the cellular biosynthesis of monounsaturated fatty acids. In our initial genome‐wide association study (GWAS) of Chinese Holstein cows, 19 SNPs fell in a 1.8‐Mb region (20.3–22.1 Mb) on chromosome 26 underlying the SCD gene and were highly significantly associated with C14:1 or C14 index. The aims of this study were to verify whether the SCD gene has significant genetic effects on milk fatty acid composition in dairy cattle. By resequencing the entire coding region of the bovine SCD gene, a total of six variations were identified, including three coding variations (g.10153G>A, g.10213T>C and g.10329C>T) and three intronic variations (g.6926A>G, g.8646G>A and g.16158G>C). The SNP in exon 3, g.10329C>T, was predicted to result in an amino acid replacement from alanine (GCG) to valine (GTG) in the SCD protein. An association study for 16 milk fatty acids using 346 Chinese Holstein cows with accurate phenotypes and genotypes was performed using the mixed animal model with the proc mixed procedure in sas 9.2. All six detected SNPs were revealed to be associated with six medium‐ and long‐chain unsaturated fatty acids (= 0.0457 to < 0.0001), specifically for C14:1 and C14 index (= 0.0005 to < 0.0001). Subsequently, strong linkage disequilibrium (D′ = 0.88–1.00) was observed among all six SNPs in SCD and the five SNPs (rs41623887, rs109923480, rs42090224, rs42092174 and rs42091426) within the 1.8‐Mb region identified in our previous GWAS, indicating that the significant association of the SCD gene with milk fatty acid content traits reduced the observed significant 1.8‐Mb chromosome region in GWAS. Haplotype‐based analysis revealed significant associations of the haplotypes encompassing the six SCD SNPs and one SNP (rs109923480) in a GWAS with C14:1, C14 index, C16:1 and C16 index (= 0.0011 to < 0.0001). In summary, our findings provide replicate evidence for our previous GWAS and demonstrate that variants in the SCD gene are significantly associated with milk fatty acid composition in dairy cattle, which provides clear evidence for an increased understanding of milk fatty acid synthesis and enhances opportunities to improve milk‐fat composition in dairy cattle.  相似文献   

2.
3.
Fatty acid synthase (FASN) is a multifunctional protein that catalyzes de novo synthesis of fatty acids in cells. It plays a key role in the lipid biosynthesis as well as in the general metabolism of all living animals. We herein investigated polymorphisms of FASN. As a result, six single nucleotide polymorphisms (SNPs) were found and then genotyped in 752 Chinese Holstein cows. It was found that g.17924A>G was non‐synonymous, g.13965 C>T, g.16907 T>C and g.18663T>C were synonymous mutations and two other two SNPs, g.8948 C>T (ss491228481) and g.14439T>C (rs133498277), were in intronic sequences of the gene. All such identified SNPs were found to be associated with milk yield and composition traits (= 0.0441 to <0.0001). Significant additive and allele substitution effects were observed for three yield traits at all six loci as well (< 0.05 to <0.01). Complete linkage disequilibrium among the five SNPs, with the exception of g.8948 C>T, was observed.  相似文献   

4.
The aim of this study was to investigate the effect of including milk yield data in the international genetic evaluation of female fertility traits to reduce or eliminate a possible bias because of across-country selection for milk yield. Data included two female fertility traits from Great Britain, Italy and the Netherlands, together with milk yield data from the same countries and from the United States, because the genetic trends in other countries may be influenced by selection decisions on bulls in the United States. Potentially, female fertility data had been corrected nationally for within-country selection and management biases for milk yield. Using a multiple-trait multiple across-country evaluation (MT-MACE) for the analysis of female fertility traits with milk yield, across-country selection patterns both for female fertility and milk yield can be considered simultaneously. Four analyses were performed; one single-trait multiple across-country evaluation analysis including only milk yield data, one MT-MACE analysis including only female fertility traits, and one MT-MACE analysis including both female fertility and milk yield traits. An additional MT-MACE analysis was performed including both female fertility and milk yield traits, but excluding the United States. By including milk yield traits to the analysis, female fertility reliabilities increased, but not for all bulls in all the countries by trait combinations. The presence of milk yield traits in the analysis did not considerably change the genetic correlations, genetic trends or bull rankings of female fertility traits. Even though the predicted genetic merits of female fertility traits hardly changed by including milk yield traits to the analysis, the change was not equally distributed to the whole data. The number of bulls in common between the two sets of Top 100 bulls for each trait in the two analyses of female fertility traits, with and without the four milk yield traits and their rank correlations were low, not necessarily because of the absence of the US milk yield data. The joint international genetic evaluation of female fertility traits with milk yield is recommended to make use of information on several female fertility traits from different countries simultaneously, to consider selection decisions for milk yield in the genetic evaluation of female fertility traits for obtaining more accurate estimating breeding values (EBV) and to acquire female fertility EBV for bulls evaluated for milk yield, but not for female fertility.  相似文献   

5.
Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further studies are required involving whole herds varying in management practices. In experiment 1, three oilseed supplements (extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) and milled rapeseed (MR)) were included in grass silage-based diets formulated to provide cows with ~350 g oil/day, and compared with a negative control (Control) diet containing no supplemental fat, and a positive control diet containing 350 g/cow per day oil as calcium salt of palm oil distillate (CPO). Diets were fed for 28-day periods in a 5×4 Latin Square design, and milk production, composition and fatty acid (FA) profile were analysed at the end of each period. Compared with Control, all lipid supplemented diets decreased milk fat SFA concentration by an average of 3.5 g/100 g FA, by replacement with both cis- and trans-MUFA/PUFA. Compared with CPO, only CPLO and MR resulted in lower milk SFA concentrations. In experiment 2, 24 commercial dairy farms (average herd size±SEM 191±19.3) from the south west of the United Kingdom were recruited and for a 1 month period asked to supplement their herd diets with either CPO, EL, CPLO or MR at the same inclusion level as the first study. Bulk tank milk was analysed weekly to determine FA concentration by Fourier Transform mid-IR spectroscopy prediction. After 4 weeks, EL, CPLO and MR all decreased herd milk SFA and increased MUFA to a similar extent (average −3.4 and +2.4 g/100 g FA, respectively) when compared with CPO. Differing responses observed between experiments 1 and 2 may be due in part to variations in farm management conditions (including basal diet) in experiment 2. This study demonstrates the importance of applying experimental research into commercial practice where variations in background conditions can augment different effects to those obtained under controlled conditions.  相似文献   

6.
L. Shi  L. Liu  Z. Ma  X. Lv  C. Li  L. Xu  B. Han  Y. Li  F. Zhao  Y. Yang  D. Sun 《Animal genetics》2019,50(5):430-438
Our previous genome‐wide association study identified 83 genome‐wide significant SNPs and 20 novel promising candidate genes for milk fatty acids in Chinese Holstein. Among them, the enoyl‐CoA hydratase, short chain 1 (ECHS1) and enoyl‐CoA hydratase and 3‐hydroxyacyl CoA dehydrogenase (EHHADH) genes were located near two SNPs and one SNP respectively, and they play important roles in fatty acid metabolism pathways. We herein validated whether the two genes have genetic effects on milk fatty acid traits in dairy cattle. By re‐sequencing the full‐length coding region, partially adjacent introns and 3000 bp up/downstream flanking sequences, we identified 12 SNPs in ECHS1: two in exons, four in the 3′ flanking region and six in introns. The g.25858322C>T SNP results in an amino acid replacement from leucine to phenylalanine and changes the secondary structure of the ECHS1 protein, and single‐locus association analysis showed that it was significantly associated with three milk fatty acids (= 0.0002–0.0013). The remaining 11 SNPs were found to be significantly associated with at least one milk fatty acid (= <0.0001–0.0040). Also, we found that two haplotype blocks, consisting of nine and two SNPs respectively, were significantly associated with eight milk fatty acids (= <0.0001–0.0125). However, none of polymorphisms was observed in the EHHADH gene. In conclusion, our findings are the first to indicate that the ECHS1 gene has a significant genetic impact on long‐chain unsaturated and medium‐chain saturated fatty acid traits in dairy cattle, although the biological mechanism is still undetermined and requires further in‐depth validation.  相似文献   

7.
Phenotypic variation in milk production traits has been described over the course of a lactation as well as between different parities. The objective of this study was to investigate whether variation in production is affected by different loci across lactations. A genome-wide association study (GWAS) using a 50-k SNP chip was conducted in 152 divergent German Holstein Friesian cows to test for association with milk production traits over different lactations. The first four lactations were analysed regarding milk yield, fat, protein, lactose, milk urea nitrogen yield and content as well as somatic cell score. Two approaches were used: (i) Wilmink curve parameters were used to assess the genetic effects over the course of a lactation and (ii) test-day yield deviations (YD) were used as a normative approach for a GWAS. The significant effects were largest for markers affecting curve parameters for which there was a statistical power <0.8 of detection even in this small design. While significant markers for YDs were detected in this study, the power to detect effects of a similar magnitude was only 0.11, suggesting that many loci may have been missed with this approach in the present design. Furthermore, all significant effects were specific for a single lactation, leading to the conclusion that the variance explained by a certain locus changes from lactation to lactation. We confirm the common evidence that most production traits vary in the degree of persistency after the peak as a result of genetic influence.  相似文献   

8.
Jia XJ  Wang CF  Yang GW  Huang JM  Li QL  Zhong JF 《遗传》2011,33(12):1359-1365
文章采用DNA测序、PCR-RFLP和CRS-PCR技术对979头中国荷斯坦牛POU1F1基因与PRL基因进行研究,发现了3个新SNPs,分别是POU1F1基因第二外显子G1178C、PRL基因5侧翼区A906G和A1134G。采用SAS统计软件GLM程序,利用最小二乘法拟合线性模型,分析基因多态性与产奶性状的关系。结果表明:POU1F1基因1178位点GC基因型在产奶量、乳蛋白量、乳脂量方面均为优良基因型。PRL基因5侧翼区906位点AG基因型在产奶量方面为优良基因型,1134位点不同基因型产奶性状差异不显著。对PRL基因5侧翼区的906位点和POU1F1基因的1178位点进行基因互作分析,结果在乳脂率、乳蛋白率、产奶量、乳蛋白量和乳脂量方面各基因型组合之间均未观察到显著差异,说明基因聚合效应并不是单基因效应的简单相加,基因聚合效应在分子育种中具有更重要的意义。  相似文献   

9.
刘莉莉  郭爱伟  吴培福  陈粉粉  杨亚晋  张勤 《遗传》2018,40(12):1092-1100
本课题组前期通过GWAS研究,发现VPS28基因在荷斯坦奶牛乳腺组织中特异性高表达,且其5′-UTR的突变位点-58C>T与乳脂性状关联,但其对乳脂性状的调控机理尚未明确。本研究为了明确VPS28基因及其突变位点-58C>T对乳脂的调控机理,首先利用启动子活性分析检测突变位点-58C>T对VPS28基因的影响,发现该突变位点显著降低VPS28基因启动子活性;然后利用RNA干扰技术敲降奶牛原代乳腺上皮细胞中VPS28基因表达量,检测VPS28通路和乳脂合成相关基因mRNA表达量以及细胞中脂肪滴形态,分析结果发现敲降VPS28基因可降低泛素化-溶酶体和泛素化-蛋白酶体通路基因和乳脂合成相关基因的表达量,并提高细胞中甘油三酯的合成,预示VPS28基因可能通过泛素化-溶酶体和泛素化-蛋白酶体途径调控乳脂生成。本研究结果在转录组水平揭示VPS28基因对乳脂合成的调控机制,为奶牛乳脂性状的分子育种研究提供参考依据。  相似文献   

10.
This study investigated the relationships between methane (CH4) emission and fatty acids, volatile metabolites (V) and non-volatile metabolites (NV) in milk of dairy cows. Data from an experiment with 32 multiparous dairy cows and four diets were used. All diets had a roughage : concentrate ratio of 80 : 20 based on dry matter (DM). Roughage consisted of either 1000 g/kg DM grass silage (GS), 1000 g/kg DM maize silage (MS), or a mixture of both silages (667 g/kg DM GS and 333 g/kg DM MS; 333 g/kg DM GS and 677 g/kg DM MS). Methane emission was measured in climate respiration chambers and expressed as production (g/day), yield (g/kg dry matter intake; DMI) and intensity (g/kg fat- and protein-corrected milk; FPCM). Milk was sampled during the same days and analysed for fatty acids by gas chromatography, for V by gas chromatography–mass spectrometry, and for NV by nuclear magnetic resonance. Several models were obtained using a stepwise selection of (1) milk fatty acids (MFA), V or NV alone, and (2) the combination of MFA, V and NV, based on the minimum Akaike’s information criterion statistic. Dry matter intake was 16.8±1.23 kg/day, FPCM yield was 25.0±3.14 kg/day, CH4 production was 406±37.0 g/day, CH4 yield was 24.1±1.87 g/kg DMI and CH4 intensity was 16.4±1.91 g/kg FPCM. The observed CH4 emissions were compared with the CH4 emissions predicted by the obtained models, based on concordance correlation coefficient (CCC) analysis. The best models with MFA alone predicted CH4 production, yield and intensity with a CCC of 0.80, 0.71 and 0.69, respectively. The best models combining the three types of metabolites included MFA and NV for CH4 production and CH4 yield, whereas for CH4 intensity MFA, NV and V were all included. These models predicted CH4 production, yield and intensity better with a higher CCC of 0.92, 0.78 and 0.93, respectively, and with increased accuracy (Cb) and precision (r). The results indicate that MFA alone have moderate to good potential to estimate CH4 emission, and furthermore that including V (CH4 intensity only) and NV increases the CH4 emission prediction potential. This holds particularly for the prediction model for CH4 intensity.  相似文献   

11.
The effects of additive, dominance, additive by dominance, additive by additive and dominance by dominance genetic effects on age at first service, non-return rates and interval from calving to first service were estimated. Practical considerations of computing additive and dominance relationships using the genomic relationship matrix are discussed. The final strategy utilized several groups of 1000 animals (heifers or cows) in which all animals had a non-zero dominance relationship with at least one other animal in the group. Direct inversion of relationship matrices was possible within the 1000 animal subsets. Estimates of variances were obtained using Bayesian methodology via Gibbs sampling. Estimated non-additive genetic variances were generally as large as or larger than the additive genetic variance in most cases, except for non-return rates and interval from calving to first service for cows. Non-additive genetic effects appear to be of sizeable magnitude for fertility traits and should be included in models intended for estimating additive genetic merit. However, computing additive and dominance relationships for all possible pairs of individuals is very time consuming in populations of more than 200 000 animals.  相似文献   

12.
The aim of this study was to investigate the accuracy to predict detailed fatty acid (FA) composition of bovine milk by mid-infrared spectrometry, for a cattle population that partly differed in terms of country, breed and methodology used to measure actual FA composition compared with the calibration data set. Calibration equations for predicting FA composition using mid-infrared spectrometry were developed in the European project RobustMilk and based on 1236 milk samples from multiple cattle breeds from Ireland, Scotland and the Walloon Region of Belgium. The validation data set contained 190 milk samples from cows in the Netherlands across four breeds: Dutch Friesian, Meuse-Rhine-Yssel, Groningen White Headed (GWH) and Jersey (JER). The FA measurements were performed using gas–liquid partition chromatography (GC) as the gold standard. Some FAs and groups of FAs were not considered because of differences in definition, as the capillary column of the GC was not the same as used to develop the calibration equations. Differences in performance of the calibration equations between breeds were mainly found by evaluating the standard error of validation and the average prediction error. In general, for the GWH breed the smallest differences were found between predicted and reference GC values and least variation in prediction errors, whereas for JER the largest differences were found between predicted and reference GC values and most variation in prediction errors. For the individual FAs 4:0, 6:0, 8:0, 10:0, 12:0, 14:0 and 16:0 and the groups’ saturated FAs, short-chain FAs and medium-chain FAs, predictions assessed for all breeds together were highly accurate (validation R2 > 0.80) with limited bias. For the individual FAs cis-14:1, cis-16:1 and 18:0, the calibration equations were moderately accurate (R2 in the range of 0.60 to 0.80) and for the individual FA 17:0 predictions were less accurate (R2 < 0.60) with considerable bias. FA concentrations in the validation data set of our study were generally higher than those in the calibration data. This difference in the range of FA concentrations, mainly due to breed differences in our study, can cause lower accuracy. In conclusion, the RobustMilk calibration equations can be used to predict most FAs in milk from the four breeds in the Netherlands with only a minor loss of accuracy.  相似文献   

13.
Quantitative trait loci (QTL) affecting health and milk production traits were studied in seven large half-sib US Holstein families by using the granddaughter design. Genotyping for 16 markers was completed and marker allele differences within and pooled-across families were analysed. Potential QTL were identified for somatic cell score (SCS), fat yield, fat percentage, protein yield and protein percentage. Three markers (BM203, BM4505 and BM2078) were associated with significant effects for different traits and, after further analysis, may be useful in marker-assisted selection in specific families. Comparisons between these data and previously identified QTL support the location of a QTL for milk yield and protein yield on chromosome 21.  相似文献   

14.
The aim of this work was to investigate the variations of milk fatty acid (FA) composition because of changing paddocks in two different rotational grazing systems. A total of nine Holstein and nine Montbéliarde cows were divided into two equivalent groups according to milk yield, fat and protein contents and calving date, and were allocated to the following two grazing systems: a long duration (LD; 17 days) of paddock utilisation on a heterogeneous pasture and a medium duration (MD) of paddock utilisation (7 to 10 days) on a more intensively managed pasture. The MD cows were supplemented with 4 kg of concentrate/cow per day. Grazing selection was characterised through direct observations and simulated bites, collected at the beginning and at the end of the utilisation of two subsequent MD paddocks, and at the same dates for the LD system. Individual milks were sampled the first 3 days and the last 2 days of grazing on each MD paddock, and simultaneously also for the LD system. Changes in milk FA composition at the beginning of each paddock utilisation were highly affected by the herbage characteristics. Abrupt changes in MD milk FA composition were observed 1 day after the cows were moved to a new paddock. The MD cows grazed by layers from the bottom layers of the previous paddock to the top layers of the subsequent new paddock, resulting in bites with high organic matter digestibility (OMD) value and CP content and a low fibre content at the beginning of each paddock utilisation. These changes could induce significant day-to-day variations of the milk FA composition. The milk fat proportions of 16:0, saturated FA and branched-chain FA decreased, whereas proportions of de novo-synthesised FA, 18:0, c9-18:1 and 18:2n-6 increased at paddock change. During LD plot utilisation, the heterogeneity of the vegetation allowed the cows to select vegetative patches with higher proportion of leaves, CP content, OMD value and the lowest fibre content. These small changes in CP, NDF and ADF contents of LD herbage and in OMD values, from the beginning to the end of the experiment, could minimally modify the ruminal ecosystem, production of precursors of de novo-synthesised FA and ruminal biohydrogenation, and could induce only small day-to-day variations in the milk FA composition.  相似文献   

15.
Sulla (Sulla coronarium L.) forage is valued for its positive impact on ruminant production, in part due to its moderate content of condensed tannin (CT). The duration of daily grazing is a factor affecting the feed intake and milk production of ewes. In this study, the effects of grazing sulla pasture compared with annual ryegrass, and the extension of grazing from 8 to 22 h/day, were evaluated with regard to ewe forage intake and milk production, as well as the physicochemical properties and fatty acid (FA) composition of cheese. During 42 days in the spring, 28 ewes of the Comisana breed were divided into four groups (S8, S22, R8 and R22) that grazed sulla (S) or ryegrass (R) for 8 (0800 to 1600 h) or 22 h/day, and received no feeding supplement. In six cheese-making sessions, cheeses were manufactured from the 48 h bulk milk of each group. Compared with ewes grazing ryegrass, those grazing sulla had higher dry matter (DM) intake, intake rate and milk yield, and produced milk that was lower in fat and higher in casein. Ewes grazing for 22 h spent more time eating, which reduced the intake rate, increased DM and nutrient intake and milk yield, and reduced milk fat. Due to the ability of CT to inhibit the complete ruminal biohydrogenation of polyunsaturated fatty acids (PUFA), the FA composition of sulla cheese was more beneficial for consumer health compared with ryegrass cheese, having lower levels of saturated fatty acids and higher levels of PUFA and n-3 FA. The FA profile of S8 cheese was better than that of S22 cheese, as it was higher in branched-chain FA, monounsaturated FA, PUFA, rumenic acid (c9,t11-C18:2), and had a greater health-promoting index. The effect of short grazing time on sulla was attributed to major inhibition of PUFA biohydrogenating ruminal bacteria, presumably stimulated by the higher accumulation of sulla CT in the rumen, which is related to a higher intake rate over a shorter eating time. Thus, grazing sulla improved the performance of ewes, thereby increasing, especially with short grazing time, the nutritional properties of cheese fat.  相似文献   

16.
Associations were analysed between polymorphisms of the growth hormone gene (GH-MspI) (localized in intron 3) and milk production traits of Beijing Holstein cows (a total of 543 cows). Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method was used for identification of various geno-types. Frequencies of genotypes were 0.77, 0,21 and 0.02 for A/A, A/B and B/B, respectively. The frequency of theGH A allele is 0.875. The results of the least squares means show that in all three lactations, theGH A/A cows yielded more milk (P < 0.01 for lactation I andP 0.05 for lactations II and III), whereas A/B cows showed higher milk fat content than A/A individuals (P < 0.05 for lactations I and II, andP < 0.01 for lactation III). The A/A cows yielded more fat than A/B individuals (P < 0.01 only in lactation I). The A/A cows yielded more milk protein than A/B individuals (P < 0.01 for lactations I, II, and III). The A/A cows produced milk of higher protein content than of A/B individuals (P < 0.05 only in lactation II).  相似文献   

17.
With the Illumina BovineSNP50K BeadChip, we performed a genome‐wide association study (GWAS) for two pigmentation traits in a Chinese Holstein population: proportion of black (PB) and teat colour (TC). A case–control design was used. Cases were the cows with PB <0.30 (= 129) and TC <2 points (= 140); controls were those with PB >0.90 (= 58) and TC >4 points (= 281). The RM test of roadtrips (version 1.2) was applied to detect SNPs for the two traits with 42 883 and 42 741 SNPs respectively. A total of nine and 12 genome‐wide significant (< 0.05) SNPs associated with PB and TC respectively were identified. Of these, two SNPs for PB were located within the KIT and IGFBP7 genes, and the other four SNPs were 23~212 kb away from the PDGFRA gene on BTA6; nine SNPs associated with TC were located within or 21~78.8 kb away from known genes on chromosomes 4, 11, 22, 23 and 24. By combing through our GWAS results and the biological functions of the genes, we suggest that the KIT, IGFBP7, PDGFRA, MITF, ING3 and WNT16 genes are promising candidates for PB and TC in Holstein cattle, providing a basis for further investigation on the genetic mechanism of pigmentation formation.  相似文献   

18.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

19.
A genome‐wide association study (GWAS) was conducted on 15 milk production traits in Chinese Holstein. The experimental population consisted of 445 cattle, each genotyped by the GGP (GeneSeek genomic profiling)‐BovineLD V3 SNP chip, which had 26 151 public SNPs in its manifest file. After data cleaning, 20 326 SNPs were retained for the GWAS. The phenotypes were estimated breeding values of traits, provided by a public dairy herd improvement program center that had been collected once a month for 3 years. Two statistical models, a fixed‐effect linear regression model and a mixed‐effect linear model, were used to estimate the association effects of SNPs on each of the phenotypes. Genome‐wide significant and suggestive thresholds were set at 2.46E‐06 and 4.95E‐05 respectively. The two statistical models concurrently identified two genome‐wide significant (< 0.05) SNPs on milk production traits in this Chinese Holstein population. The positional candidate genes, which were the ones closest to these two identified SNPs, were EEF2K (eukaryotic elongation factor 2 kinase) and KLHL1 (kelch like family member 1). These two genes could serve as new candidate genes for milk yield and lactation persistence, yet their roles need to be verified in further function studies.  相似文献   

20.
We genotyped 58 single nucleotide polymorphisms (SNPs) in 25 candidate genes in about 800 Italian Holstein sires. Fifty‐six (minor allele frequency >0.02) were used to evaluate their association with single traits: milk yield (MY), milk fat yield (FY), milk protein yield (PY), milk fat percentage (FP), milk protein percentage (PP), milk somatic cell count (MSCC); and complex indexes: longevity, fertility and productivity–functionality type (PFT), using deregressed proofs, after adjustment for familial relatedness. Thirty‐two SNPs were significantly associated (proportion of false positives <0.05) with different traits: 16 with MSCC, 15 with PY, 14 with MY, 12 with PFT, eight with longevity, eight with FY, eight with PP, five with FP and two with fertility. In particular, a SNP in the promoter region of the PRLR gene was associated with eight of nine traits. DGAT1 polymorphisms were highly associated with FP and FY. Casein gene markers were associated with several traits, confirming the role of the casein gene cluster in affecting milk yield, milk quality and health traits. Other SNPs in genes located on chromosome 6 were associated with PY, PP, PFT, MY (PPARGC1A) and MSCC (KIT). This latter association may suggest a biological link between the degree of piebaldism in Holstein and immunological functions affecting somatic cell count and mastitis resistance. Other significant SNPs were in the ACACA, CRH, CXCR1, FASN, GH1, LEP, LGB (also known as PAEP), MFGE8, SRC, TG, THRSP and TPH1 genes. These results provide information that can complement QTL mapping and genome‐wide association studies in Holstein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号