首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human intestinal microbiota is important to host health and is associated with various diseases. It is a challenge to identify the functions and metabolic activity of microorganisms at the single-cell level in gut microbial community. In this study, we applied Raman microspectroscopy and deuterium isotope probing (Raman–DIP) to quantitatively measure the metabolic activities of intestinal bacteria from two individuals and analysed lipids and phenylalanine metabolic pathways of functional microorganisms in situ. After anaerobically incubating the human faeces with heavy water (D2O), D2O with specific substrates (glucose, tyrosine, tryptophan and oleic acid) and deuterated glucose, the C–D band in single-cell Raman spectra appeared in some bacteria in faeces, due to the Raman shift from the C–H band. Such Raman shift was used to indicate the general metabolic activity and the activities in response to the specific substrates. In the two individuals' intestinal microbiota, the structures of the microbial communities were different and the general metabolic activities were 76 ± 1.0% and 30 ± 2.0%. We found that glucose, but not tyrosine, tryptophan and oleic acid, significantly stimulated metabolic activity of the intestinal bacteria. We also demonstrated that the bacteria within microbiota preferably used glucose to synthesize fatty acids in faeces environment, whilst they used glucose to synthesize phenylalanine in laboratory growth environment (e.g. LB medium). Our work provides a useful approach for investigating the metabolic activity in situ and revealing different pathways of human intestinal microbiota at the single-cell level.  相似文献   

2.
Antibiotics have a strong killing effect on bacteria and are the first choice for the prevention and treatment of bacterial infectious diseases. Therefore, they have been widely used in the medical field, animal husbandry and planting industry. However, with the massive use of antibiotics, more and more antibiotic-resistant bacteria (ARB) have emerged. Because human intestines are rich in nutrients, have suitable temperature, and are high in bacterial abundance, they can easily become a hotbed for the spread of ARB and antibiotic-resistant genes (ARGs). When opportunistic pathogenic bacteria in the intestine acquire ARGs, the infectious diseases caused by such opportunistic pathogens will become more difficult to treat, or even impossible to cure. Therefore, ARB in the human intestine are like a ‘time bomb’. In this review, we discuss the sources of intestinal ARB and the transmission routes of ARGs in the human intestine from the perspective of One Health. Further, we describe various methods to prevent the emergence of ARB and inhibit the spread of ARGs in the human intestine. Finally, we may be able to overcome ARB in the human intestine using an interdisciplinary ‘One Health’ approach.  相似文献   

3.
Applied Microbiology and Biotechnology - During the past years, antibiotic-resistant bacteria (ARB) leading for the spreading of antibiotic resistance genes (ARGs) became a global problem,...  相似文献   

4.
The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid‐mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self‐transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4‐mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%–97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments.  相似文献   

5.
The rise in infections by antibiotic-resistant bacteria poses a serious public health problem worldwide. The gut microbiome of animals is a reservoir for antibiotic resistance genes (ARGs). However, the correlation between the gut microbiome of wild animals and ARGs remains controversial. Here, based on the metagenomes of giant pandas (including three wild populations from the Qinling, Qionglai and Xiaoxiangling Mountains, and two major captive populations from Yaan and Chengdu), we investigated the potential correlation between the constitution of the gut microbiome and the composition of ARGs across the different geographic locations and living environments. We found that the types of ARGs were correlated with gut microbiome composition. The NMDS cluster analysis using Jaccard distance of the ARGs composition of the gut microbiome of wild giant pandas displayed a difference based on geographic location. Captivity also had an effect on the differences in ARGs composition. Furthermore, we found that the Qinling population exhibited profound dissimilarities of both gut microbiome composition and ARGs (the highest proportion of Clostridium and vancomycin resistance genes) when compared to the other wild and captive populations studies, which was supported by previous giant panda whole-genome sequencing analysis. In this study, we provide an example of a potential consensus pattern regarding host population genetics, symbiotic gut microbiome and ARGs. We revealed that habitat isolation impacts the ARG structure in the gut microbiome of mammals. Therefore, the difference in ARG composition between giant panda populations will provide some basic information for their conservation and management, especially for captive populations.  相似文献   

6.
目的

探究养殖场内育肥猪粪便与土壤的微生物组成和抗生素耐药基因构成,并挖掘之间的关联。

方法

选择上海市崇明区5家猪养殖场,采集猪粪便和土壤样本,使用Illumina NovaSeq 6000高通量测序平台进行全基因组鸟枪法测序。通过主坐标分析、LEfSe分析、共现网络分析和统计学检验,探究样本微生物组成、多样性特征和抗生素耐药基因之间的关系。

结果

猪粪便中的主要微生物包括拟杆菌门、厚壁菌门、变形菌门和放线菌门,主要耐药基因类型包括多药耐药类、四环素类、糖肽类、肽类、氟喹诺酮类和β-内酰胺类等。来自同一养猪场的样本在微生物丰度和耐药基因多样性上存在相关性。此外,研究还发现养猪场运作因素如饲料成分、饲养密度和卫生环境等,导致了不同养猪场之间的微生物组成和耐药基因的差异。在猪粪—土壤界面,一些有益微生物之间存在共生关系,具有抑制潜在病原微生物的生长能力,并对土壤微生态产生影响。不同类型的耐药基因之间也存在共生关系。

结论

通过宏基因组学方法研究了猪粪便与土壤中的微生物和耐药基因,揭示了微生物与抗生素耐药基因之间的相关性,提出微生物群是耐药基因谱的重要驱动因素。这一发现为通过微生态调控来预防和控制抗生素耐药性提供了科学依据。

  相似文献   

7.
Antibiotic resistance is a major public health concern worldwide. The gut microbiota harbours multiple antibiotic resistant genes (ARGs) that contribute to the existing and future microbial population in a community or ecosystem. This study aimed to investigate the prevalence of 35 antibiotic resistance genes (ARGs) in the gut microbiota of the tribal people of Nabarangpur, Odisha, India. A total of 83 faecal samples were collected from three different tribes (Bhatra, Gond, and Paraja). Total faecal DNA was extracted, and the simplex polymerase chain reaction was performed to detect selected ARGs. Further analysis was done to estimate the incidence of these ARGs across these tribes based on alcohol consumption habits. We identified a higher prevalence of tetracycline resistance genes (tetW, tetQ and tetM) in the gut microbiota among three populations. Furthermore, a significant (P = 0·024) difference in ARG prevalence against vancomycin in individuals with and without alcohol consumption habits was noticed. The overall distribution of ARGs among the three major tribes of this location was found to be very similar. Together, irrespective of the tribes, the people of this location have gut microbiota harbouring different kinds of ARGs and tetracycline-resistant genes are the most commonly found ARGs.  相似文献   

8.
Antibiotic-resistant bacteria (ARB) have gained increased notoriety due to their continued detection in environmental media and consequently their threat to human and animal health. The continuing spread of antibiotic resistance throughout the environment is of growing environmental and public health concern, making it difficult to treat harmful resistant diseases. This paper examines the presence of antibiotics, ARB, and antibiotic-resistant genes (ARGs) in aquatic environments; the effectiveness of current water treatment strategies to remove them; and risk assessment methods available that can be used to evaluate the risk from antibiotic resistance. Antibiotics, ARB, and ARGs have been reported at varying levels in wastewater treatment plants, hospital wastewater, irrigation water, recreational water, and drinking water. There are many different water treatments capable of reducing antibiotic resistance (including chlorination, UV, and ozone); however, no one method can fully eliminate it with much variation in the reported effects. Risk assessment models can be used for interpreting field data into the risk to human health from antibiotic resistance. Currently, there is no gold standard risk assessment method for evaluating antibiotic resistance. Methods in this area need further development to reflect evolving risk assessment methodologies and dynamic data as it emerges.  相似文献   

9.
抗生素耐药基因作为一种新型的环境污染物已引起研究者的高度关注。畜禽养殖业长期将抗生素添加到饲料中,在促进动物生长、预防和治疗动物疾病等方面起了重要作用。这些抗生素大多数不能被动物完全吸收,在动物肠道中诱导出耐抗生素细菌和抗生素耐药基因,并随着粪便排出体外。畜禽粪便作为重要的抗生素、耐抗生素细菌和抗生素耐药基因储存库,通过堆粪、施肥等农业活动进入土壤环境中,可刺激土壤中耐抗生素细菌和抗生素耐药基因的富集。耐药基因借助于基因水平转移等方式在土壤介质中进一步传播扩散,甚至进入植物中随食物链传播,对生态环境和人类健康造成极大的威胁。为了正确评估抗生素耐药基因的生态风险,本文结合国内外相关研究,系统阐述了畜禽粪便-土壤系统中抗生素耐药基因的来源、分布及扩散机制,同时探讨了细菌耐药性的主要研究方法,指出堆肥化处理仍是目前去除抗生素耐药基因的主要手段,并对今后的研究方向进行展望。  相似文献   

10.
Human gut microbiota modulates normal physiological functions, such as maintenance of barrier homeostasis and modulation of metabolism, as well as various chronic diseases including type 2 diabetes and gastrointestinal cancer. Despite decades of research, the composition of the gut microbiota remains poorly understood. Here, we established an effective extraction method to obtain high quality gut microbiota genomes, and analyzed them with third-generation sequencing technology. We acquired a large quantity of data from each sample and assembled large numbers of reliable contigs. With this approach, we constructed tens of completed bacterial genomes in which there were several new bacteria species. We also identified a new conditional pathogen, Enterococcus tongjius, which is a member of Enterococci. This work provided a novel and reliable approach to recover gut microbiota genomes, facilitating the discovery of new bacteria species and furthering our understanding of the microbiome that underlies human health and diseases.Subject terms: DNA sequencing, Mechanisms of disease  相似文献   

11.
污水处理厂是抗生素抗性基因(antibiotic resistance genes,ARGs)和抗生素抗性细菌(antibiotic resistant bacteria,ARB)重要的源和汇,生物气溶胶是ARGs和ARB自污水处理厂向周边环境释放的关键载体。目前缺乏对污水处理厂生物气溶胶抗生素抗性污染特征、来源及潜在风险的系统性总结。本文从采样方法、检测方法、逸散特征、来源、潜在危害和风险评估等方面对污水处理厂抗生素抗性污染研究现状进行综述。惯性采样法和过滤法是常用的污水处理厂抗生素抗性生物气溶胶主要采集方法,而宏基因组测序、组装和分箱为其ARGs组成、可移动性和宿主提供了有效的检测方法,抗多药类、抗杆菌肽类、抗氨基糖苷类、抗四环素类、抗β-内酰胺类、抗磺胺类、抗大环内酯类和抗糖肽类等抗性基因在污水处理厂PM10、PM2.5和PM1.0颗粒物中广泛检出。格栅间、生化反应池和污泥处理单元是污水处理厂PM10、PM2.5和PM1.0负载ARGs和ARB的主要释放单元。污水处理厂不同粒径生物气溶胶中致病性ARB的存在增加了抗生素治疗的难度,而污水和污泥对ARGs和ARB的释放起到了重要的源的贡献。本文在研究内容、研究技术和控制策略等方面也提出了相关展望,以期为污水厂生物气溶胶抗生素抗性污染的监测和防护提供参考和借鉴。  相似文献   

12.
环境中抗生素抗性基因与I型整合子的研究进展   总被引:3,自引:1,他引:3  
抗生素抗性基因(Antibiotic resistance genes,ARGs)作为一种新型污染物在不同环境中广泛分布、来源复杂,对生态环境和人类健康造成了很大的潜在风险。同时,Ⅰ型整合子(Int Ⅰ)介导的ARGs水平转移是环境中微生物产生耐药性的重要途径,Ⅰ型整合子整合酶基因(intI1)与ARGs丰度在环境中表现出了较高的正相关性,Int Ⅰ可以作为标记物在一定程度上反映ARGs在环境中的迁移转化规律和人类活动影响程度。本文介绍ARGs与Int Ⅰ在环境中的来源与分布,总结Int Ⅰ介导的ARGs迁移转化机制以及相关研究方法,并展望未来的研究发展趋势。  相似文献   

13.
Antimicrobial resistance (AMR) poses a worldwide threat to human health and biosecurity. The spread of antibiotic resistance genes (ARGs) via conjugative plasmid transfer is a major contributor to the evolution of this resistance. Although permitted as safe food additives, compounds such as saccharine, sucralose, aspartame, and acesulfame potassium that are commonly used as nonnutritive sweeteners have recently been associated with shifts in the gut microbiota similar to those caused by antibiotics. As antibiotics can promote the spread of antibiotic resistance genes (ARGs), we hypothesize that these nonnutritive sweeteners could have a similar effect. Here, we demonstrate for the first time that saccharine, sucralose, aspartame, and acesulfame potassium could promote plasmid-mediated conjugative transfer in three established conjugation models between the same and different phylogenetic strains. The real-time dynamic conjugation process was visualized at the single-cell level. Bacteria exposed to the tested compounds exhibited increased reactive oxygen species (ROS) production, the SOS response, and gene transfer. In addition, cell membrane permeability increased in both parental bacteria under exposure to the tested compounds. The expression of genes involved in ROS detoxification, the SOS response, and cell membrane permeability was significantly upregulated under sweetener treatment. In conclusion, exposure to nonnutritive sweeteners enhances conjugation in bacteria. Our findings provide insight into AMR spread and indicate the potential risk associated with the presence of nonnutritive sweeteners.Subject terms: Microbial ecology, Water microbiology  相似文献   

14.
Paraoxonases (PON) are a family of proteins (PON1, 2 and 3) with multiple enzymatic activities. PON1 interferes with homoserine lactone-mediated quorum sensing in bacteria and with reactive oxygen species (ROS) in humans and mice. PON1 gene mutations have been linked to multiple traits, including aging, and diseases of the cardiovascular, nervous and gastrointestinal system. The overlapping enzymatic activities in the PON family members and high linkage disequilibrium rates within their polymorphisms confound animal and human studies of PON1 function. In contrast, arthropods such as Drosophila melanogaster have no PON homologs, resulting in an ideal model to study interactions between PON genotype and host phenotypes. We hypothesized that expression of PON1 in D. melanogaster would alter ROS. We found that PON1 alters expression of multiple oxidative stress genes and decreases superoxide anion levels in normal and germ-free D. melanogaster. We also found differences in the composition of the gut microbiota, with a remarkable increase in levels of Lactobacillus plantarum and associated changes in expression of antimicrobial and cuticle-related genes. PON1 expression directly decreased superoxide anion levels and altered bacterial colonization of the gut and its gene expression profile, highlighting the complex nature of the interaction between host genotype and gut microbiota. We speculate that the interaction between some genotypes and human diseases may be mediated by the presence of certain gut bacteria that can induce specific immune responses in the gut and other host tissues.  相似文献   

15.
Specific interactions between parasite genotypes and host genotypes (Gp × Gh) are commonly found in invertebrate systems, but are largely lacking a mechanistic explanation. The genotype of invertebrate hosts can be complemented by the genomes of microorganisms living on or within the host (‘microbiota’). We investigated whether the bacterial gut microbiota of bumble bees (Bombus terrestris) can account for the specificity of interactions between individuals from different colonies (previously taken as host genotype proxy) and genotypes of the parasite Crithidia bombi. For this, we transplanted the microbiota between individuals of six colonies. Both the general infection load and the specific success of different C. bombi genotypes were mostly driven by the microbiota, rather than by worker genotype. Variation in gut microbiota can therefore be responsible for specific immune phenotypes and the evolution of gut parasites may be driven by interactions with ‘microbiota types’ as well as with host genotypes.  相似文献   

16.
Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.  相似文献   

17.
Wastewater discharges introduce antibiotic residues and antibiotic‐resistant bacteria (ARB) into surface waters. Both inputs directly affect the streambed resistome, either by exerting a selective pressure that favour the proliferation of resistant phenotypes or by enriching the resident communities with wastewater‐associated ARB. Here, we investigated the impact of raw and treated urban wastewater discharges on epilithic (growing on rocks) and epipsammic (growing on sandy substrata) streambed biofilms. The effects were assessed by comparing control and impact sites (i) on the composition of bacterial communities; (ii) on the abundance of twelve antibiotic resistance genes (ARGs) encoding resistance to β‐lactams, fluoroquinolones, sulphonamides, tetracyclines, macrolides and vancomycin, as well as the class 1 integron‐integrase gene (intI1); (iii) on the occurrence of wastewater‐associated bacteria, including putative pathogens, and their potential linkage to target ARGs. We measured more pronounced effects of raw sewage than treated wastewater at the three studied levels. This effect was especially noticeable in epilithic biofilms, which showed a higher contribution of wastewater‐associated bacteria and ARB than in epipsammic biofilms. Comparison of correlation coefficients obtained between the relative abundance of both target ARGs and operational taxonomic units classified as either potential pathogens or nonpathogens yielded significant higher correlations between the former category and genes intI1, sul1, sul2 and ermB. Altogether, these results indicate that wastewater‐associated micro‐organisms, including potential pathogens, contribute to maintain the streambed resistome and that epilithic biofilms appear as sensitive biosensors of the effect of wastewater pollution in surface waters.  相似文献   

18.
Background: The importance of gut microbiota in human health is being increasingly studied. Imbalances in gut microbiota have been associated with infection, inflammation, and obesity. Antibiotic use is the most common and significant cause of major alterations in the composition and function of the gut microbiota and can result in colonization with multidrug-resistant bacteria. Methods: The purpose of this review is to present existing evidence on how microbiota modulation and prevention of gut dysbiosis can serve as tools to combat antimicrobial resistance. Results: While the spread of antibiotic-resistant pathogens requires antibiotics with novel mechanisms of action, the number of newly discovered antimicrobial classes remains very low. For this reason, the application of alternative modalities to combat antimicrobial resistance is necessary. Diet, probiotics/prebiotics, selective oropharyngeal or digestive decontamination, and especially fecal microbiota transplantation (FMT) are under investigation with FMT being the most studied. But, as prevention is better than cure, the implementation of antimicrobial stewardship programs and strict infection control measures along with newly developed chelating agents could also play a crucial role in decreasing colonization with multidrug resistant organisms. Conclusion: New alternative tools to fight antimicrobial resistance via gut microbiota modulation, seem to be effective and should remain the focus of further research and development.  相似文献   

19.
【背景】肠道菌群是人体的重要组成部分,在人体的多种生命活动中发挥着重要作用。【目的】探究维吾尔族和汉族儿童肠道细菌群落特征,为儿童营养健康状况监测和营养改善工作提供更有效精准的营养干预策略。【方法】从新疆维吾尔自治区泽普县维吾尔族和河南省民权县汉族人群中分别随机选取10?12岁学龄期儿童各20名,同一时间段收集其新鲜粪便,提取细菌总DNA,通过高通量测序和生物信息学分析,研究两地区健康维吾尔族儿童与汉族儿童肠道细菌群落的差异。【结果】获得测序序列2 007 100条,归类于994个OTU;所有样本共含15个细菌门139属。α多样性和β多样性分析表明,调查地区的2个民族儿童肠道细菌的丰富度和多样性均有统计学意义上的差异,维吾尔族儿童肠道细菌群落丰富度高于汉族儿童,而物种多样性不如汉族儿童。其中,维吾尔族儿童肠道细菌丰度相对占优势的门和属及其丰度值为:拟杆菌门(Bacteroidetes,63%)、厚壁菌门(Firmicutes,22%)、普氏菌属(Prevotella,61%)、琥珀酸弧菌属(Succinivibrio,9%)和粪杆菌属(Faecalibacterium,5%);汉族儿童肠道细菌丰度占优势的门和属及其丰度值为:厚壁菌门(57%)、拟杆菌门(23%)、粪杆菌属(16%)、普氏菌属(11%)和拟杆菌属(Bacteroides,11%)。【结论】调查地区维吾尔族与汉族儿童肠道细菌群落差异较大,这为进一步研究肠道菌群与膳食因素及人体营养健康状况之间的关系提供了依据。  相似文献   

20.
Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host‐specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among‐individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next‐generation sequencing to genotype the sticklebacks’ gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC‐microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex‐dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis‐associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite‐driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号