首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
We studied the interaction of chaperonin GroEL with different misfolded forms of tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH): (1) GAPDH from rabbit muscles with all SH-groups modified by 5,5'-dithiobis(2-nitrobenzoate); (2) O-R-type dimers of mutant GAPDH from Bacillus stearothermophilus with amino acid substitutions Y283V, D282G, and Y283V/W84F, and (3) O-P-type dimers of mutant GAPDH from B. stearothermophilus with amino acid substitutions Y46G/S48G and Y46G/R52G. It was shown that chemically modified GAPDH and the O-R-type mutant dimers bound to GroEL with 1:1 stoichiometry and dissociation constants K(d) of 0.4 and 0.9 muM, respectively. A striking feature of the resulting complexes with GroEL was their stability in the presence of Mg-ATP. Chemically modified GAPDH and the O-R-type mutant dimers inhibited GroEL-assisted refolding of urea-denatured wild-type GAPDH from B. stearothermophilus but did not affect its spontaneous reactivation. In contrast to the O-R-dimers, the O-P-type mutant dimers neither bound nor affected GroEL-assisted refolding of the wild-type GAPDH. Thus, we suggest that interaction of GroEL with certain types of misfolded proteins can result in the formation of stable complexes and the impairment of chaperonin activity.  相似文献   

2.
Brownian dynamics simulations of computer models of GAPDH mutants interacting with F-actin emphasized the electrostatic nature of such interactions, and confirmed the importance of four previously identified lysine residues on the GAPDH structure in these interactions. Mutants were GAPDH models in which one or more of the previously identified lysines had been replaced with alanine. Simulations showed reduced binding of these mutants to F-actin compared to wild-type GAPDH. Binding was significantly reduced by mutating the four lysines; the specific electrostatic interaction energy of the quadruple mutant was -7.3 +/- 1.0 compared to -11.4 +/- 0.5 kcal/mol for the wild enzyme. The BD simulations also reaffirmed the importance of quaternary structure for GAPDH binding F-actin.  相似文献   

3.
Cytotechnology - We found that strawberry extract suppressed immunoglobulin (Ig) E production in vitro and in vivo, and identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as one of the IgE...  相似文献   

4.
The 57‐amino acid human salivary polypeptide P‐B has been synthesized by the solid‐phase method using 9‐fluorenylmethoxycarbonyl (Fmoc) strategy. The circular dichroism (CD) spectroscopy, Fourier‐transform infrared spectroscopy (FTIR) and molecular modeling methods have been used for conformational studies of P‐B. Examination of the CD spectra of P‐B showed the content of the secondary structure to be independent of temperature over the range 0–60 °C at pH = 7 as well as over the pH range of 2–12 at 37 °C. P‐B adopts predominantly unordered structure with locally appearing β‐turns. The cumulative results obtained using the CD and FTIR spectroscopic techniques indicate the percentage of the polyproline type‐II (PPII) helix being as low as about 10%. Similarly, the molecular dynamics (MD) simulations reveal only a short PPII helix in the C‐terminal fragment of the peptide (Pro51–Pro54), which constitutes 7%. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
6.
Izutani Y  Murai T  Imoto T  Ohnishi M  Oda M  Ishijima S 《FEBS letters》2005,579(20):4333-4336
Gymnemic acids (GA) inhibited rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Binding of GA to GAPDH was observed by surface plasmon resonance measurement. Incubation of GAPDH with GA induced a smearing of the GAPDH band in SDS-PAGE. The GA-induced smearing was diminished by prior incubation of GA with gamma-cyclodextrin or by GA treatment with NAD. GA treatment did not affect the electrophoretic mobility of glucose-6-phosphate isomerase and dehydrogenase. GA treatment diminished the GAPDH band detected by an antibody to phosphoserine, but did not affect the phosphoserine bands of glucose-6-phosphate isomerase and dehydrogenase. These results indicated that GA specifically induced dephosphorylation of GAPDH.  相似文献   

7.
The dinoflagellate Lepidodinium chlorophorum possesses "green" plastids containing chlorophylls a and b (Chl a+b), unlike most dinoflagellate plastids with Chl a+c plus a carotenoid peridinin (peridinin-containing plastids). In the present study we determined 8 plastid-encoded genes from Lepidodinium to investigate the origin of the Chl a+b-containing dinoflagellate plastids. The plastid-encoded gene phylogeny clearly showed that Lepidodinium plastids were derived from a member of Chlorophyta, consistent with pigment composition. We also isolated three different glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes from Lepidodinium-one encoding the putative cytosolic "GapC" enzyme and the remaining two showing affinities to the "plastid-targeted GapC" genes. In a GAPDH phylogeny, one of the plastid-targeted GapC-like sequences robustly grouped with those of dinoflagellates bearing peridinin-containing plastids, while the other was nested in a clade of the homologues of haptophytes and dinoflagellate genera Karenia and Karlodinium bearing "haptophyte-derived" plastids. Since neither host nor plastid phylogeny suggested an evolutionary connection between Lepidodinium and Karenia/Karlodinium, a lateral transfer of a plastid-targeted GapC gene most likely took place from a haptophyte or a dinoflagellate with haptophyte-derived plastids to Lepidodinium. The plastid-targeted GapC data can be considered as an evidence for the single origin of plastids in haptophytes, cryptophytes, stramenopiles, and alveolates. However, in the light of Lepidodinium GAPDH data, we need to closely examine whether the monophyly of the plastids in the above lineages inferred from plastid-targeted GapC genes truly reflects that of the host lineages.  相似文献   

8.
The glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) appeared to be an archtypical protein of limited excitement. However, independent studies from a number of different laboratories reported a variety of diverse biological properties of the GAPDH protein. As a membrane protein, GAPDH functions in endocytosis; in the cytoplasm, it is involved in the translational control of gene expression; in the nucleus, it functions in nuclear tRNA export, in DNA replication, and in DNA repair. The intracellular localization of GAPDH may be dependent on the proliferative state of the cell. Recent studies identified a role for GAPDH in neuronal apoptosis. GAPDH gene expression was specifically increased during programmed neuronal cell death. Transfection of neuronal cells with antisense GAPDH sequences inhibited apoptosis. Lastly, GAPDH may be directly involved in the cellular phenotype of human neurodegenerative disorders, especially those characterized at the molecular level by the expansion of CAG repeats. In this review, the current status of ongoing GAPDH studies are described (with the exception of its unique oxidative modification by nitric oxide). Consideration of future directions are suggested. J. Cell. Biochem. 66:133-140, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Abstract

Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibits multiple functions separate and distinct from its historic role in energy production. Further, it exhibits dynamic changes in its subcellular localization which is an a priori requirement for its multiple activities. Separately, moonlighting GAPDH may function in the pathology of human disease, involved in tumorigenesis, diabetes, and age-related neurodegenerative disorders. It is suggested that moonlighting GAPDH function may be related to specific modifications of its protein structure as well as the formation of GAPDH protein: protein or GAPDH protein: nucleic acid complexes.  相似文献   

10.
Protein kinase B (Akt) plays important roles in regulation of cell growth and survival, but while many aspects of its mechanism of action are known, there are potentially additional regulatory events that remain to be discovered. Here we detected a 36-kDa protein that was co-immunoprecipitated with protein kinase Bβ (Akt2) in OVCAR-3 ovarian cancer cells. The protein was identified to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by MALDI-TOF/TOF MS, and the interaction of Akt2 and GAPDH was verified by reverse immunoprecipitation. Our further study showed that Akt2 may suppress GAPDH-mediated apoptosis in ovarian cancer cells. Overexpression of GAPDH increased ovarian cancer cell apoptosis induced by H(2)O(2), which was inhibited by Akt2 overexpression and restored by the PI3K/Akt inhibitor wortmannin or Akt2 siRNA. Akt2 phosphorylated Thr-237 of GAPDH and decreased its nuclear translocation, an essential step for GAPDH-mediated apoptosis. The interaction between Akt2 and GAPDH may be important in ovarian cancer as immunohistochemical analysis of 10 normal and 30 cancerous ovarian tissues revealed that decreased nuclear expression of GAPDH correlated with activation (phosphorylation) of Akt2. In conclusion, our study suggests that activated Akt2 may increase ovarian cancer cell survival via inhibition of GAPDH-induced apoptosis. This effect of Akt2 is partly mediated by its phosphorylation of GAPDH at Thr-237, which results in the inhibition of GAPDH nuclear translocation.  相似文献   

11.
Alignment of the amino acid sequence of some archaeal, bacterial and eukaryotic non-phosphorylating glyceraldehydes-3-phosphate dehydrogenases (GAPNs) and aldehyde dehydrogenases (ALDHs) with the sequence of a putative GAPN present in the genome of the Gram-negative bacterium Neisseria meningitidis strain Z2491 demonstrated the conservation of residues involved in the catalytic activity. The predicted coding sequence of the N. meningitidis gapN gene was cloned in Escherichia coli XL1-blue under the expression of an inducible promoter. The IPTG-induced GAPN was purified ca. 48-fold from E. coli cells using a procedure that sequentially employed conventional ammonium sulfate fractionation as well as anion-exchange and affinity chromatography. The purified recombinant enzyme was thoroughly characterized. The protein is a homotetramer with a 50-kDa subunit, exhibiting absolute specificity for NAD and a broad spectrum of aldehyde substrates. Isoelectric focusing analysis with the purified fraction showed the presence of an acidic polypeptide with an isoelectric point of 6.3. The optimum pH of the purified enzyme was between 9 and 10. Studies on the effect of increasing temperatures on the enzyme activity revealed an optimal value ca. 64 °C. Molecular phylogenetic data suggest that N. meningitidis GAPN has a closer relationship with archaeal GAPNs and glyceraldehyde dehydrogenases than with the typical NADP-specific GAPNs from Gram-positive bacteria and photosynthetic eukaryotes.  相似文献   

12.
7,12-Dimethylbenz(a)anthracene (DMBA) and 7-methoxymethyl-12-methylbenz(a)anthracene (MeO-DMBA) are converted to a number of products during short exposures in aqueous suspension to laboratory illumination. The mixture of products binds to glyceraldehyde-3-phosphate dehydrogenase (GPDH) while inhibiting its activity but there is no apparent relationship between the binding and inhibition of enzyme activity. There is little, or no, binding or enzyme inhibition when the compounds are protected from light. 7-Bromomethyl-12-methylbenz(a)anthracene (Br-DMBA) binds to GPDH whether photoactivated or not but enzyme inhibition depends upon light exposure. The binding of light-exposed DMBA by surviving rat mammary tissue was five-times greater than with the unchanged hydrocarbon. Binding of MeO-DMBA products also occurred after light exposure but not in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号