首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The oxpecker–ungulate association of sub‐Saharan Africa is an example of a complicated interspecific association subject to variation in outcome. Oxpeckers (Buphagus spp.) are unusual birds because they not only glean ticks from an array of African ungulates, but they are one of the few avian species known to wound‐feed from their living hosts. The conditions under which oxpeckers wound‐feed and the mechanisms generating variation in this association are unclear. We took a unique approach to studying the relationship by conducting a series of feeding preference experiments on twelve captive red‐billed oxpeckers (B. erythrorhynchus). We assessed how oxpecker feeding behaviour is influenced by changes in tick abundance and tick type. In cafeteria‐style experiments, oxpeckers fed equally on ticks and liquid bovine blood. In experiments using donkeys as the host animal, oxpeckers spent more time wound‐feeding when a less‐preferred tick type was available and when tick abundance was low compared to when a preferred tick type was available and when tick abundance was high. However, oxpeckers still wound‐fed even when offered a large number of the ticks they prefer. Additional experiments incorporating tick species of different stages and multiple ungulate species are necessary to fully reveal the dynamics of this association.  相似文献   

2.
Field observations of the interactions between red‐billed oxpeckers (Buphagus erythrorhynchus) and wild ungulates in Nakuru National Park, Kenya, revealed that specific hosts frequently attempted to manipulate oxpecker foraging. This involved a repertoire of behaviour collectively referred to as resistance behaviour, and often resulted in the oxpeckers either changing their position on the host's body or departing. Cape buffalo (Syncerus caffer), the most frequently used host, performed little resistance behaviour. Waterbuck (Kobus ellipsiprymnus) were also popular oxpecker hosts, but frequently exhibited vigorous resistance behaviour. Impala (Aepyceros melampus), the third most widely used host species, also utilized resistance behaviours, but allowed a greater proportion of oxpeckers to forage without disturbance. The suite of resistance behaviours employed by waterbuck, impala and also the consequences for oxpecker foraging, differed significantly. Our data suggest that the oxpecker–ungulate interactions in the field are more complex than previously realized with resistance behaviour regularly employed by selected mammalian host species.  相似文献   

3.
With their striking predilection for perching on African ungulates and eating their ticks, yellow-billed (Buphagus africanus) and red-billed oxpeckers (B. erythrorhynchus) represent one of the few potentially mutualistic relationships among vertebrates. The nature of the oxpecker-ungulate relationship remains uncertain, however, because oxpeckers are known to consume ungulate tissues, suggesting that the relationship between oxpeckers and ungulates may also be parasitic. To examine this issue further, we obtained data on oxpecker preferences for different ungulate species, the abundance of ticks on these ungulates, and ungulate hide thickness. In support of the mutualism hypothesis, we found that both species of oxpeckers prefer ungulate hosts that harbor a higher abundance of ticks. We found no evidence that hide thickness-a measure of the potential for parasitism by oxpeckers-predicts oxpecker preferences for different ungulate species. Oxpeckers also prefer larger-bodied ungulates, possibly because larger animals have more ticks, provide a more stable platform upon which to forage, or support more oxpeckers feeding simultaneously. However, the preference for ungulates with greater tick abundance was independent of host body mass. These results support the hypothesis that the relationship between oxpeckers and ungulates is primarily mutualistic.  相似文献   

4.
Weeks P 《Animal behaviour》1999,58(6):1253-1259
Many apparent interspecific mutualisms are poorly understood. Although theory has focused on the various evolutionary problems peculiar to mutualism, especially the need to identify mechanisms that protect a mutualism from cheating or exploitation, there are relatively few quantified examples of how organisms actually interact. Oxpeckers are believed to benefit their mammalian hosts by reducing tick loads, an assumption based on the fact that the birds include ticks in their diet. I watched red-billed oxpeckers foraging on domestic cattle in the Limpopo Valley between August 1996 and September 1997. From focal watches of 41 individually colour-ringed oxpeckers, I found that birds fed mainly on wounds, in ears and by 'scissoring' with the bill (a distinctive feeding technique). Observable tick feeding represented a very small percentage of their foraging time. Based on oxpecker behaviour at feeding sites, blood from open wounds appeared to be the favoured food: oxpeckers displaced each other significantly more, and were significantly less likely to be deterred by the cows' attempts to remove them, when feeding on a wound than at other feeding sites. The preference for blood, the inability of cows to prevent oxpeckers feeding on blood and the relatively small amount of visible tick feeding suggest that, certainly for cattle, oxpeckers may not be beneficial. However, as cows have not coevolved with oxpeckers, these results may not be representative of oxpecker relations with native African mammalian hosts. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

5.
Distributions of avian mutualists are affected by changes in biotic interactions and environmental conditions driven directly/indirectly by human actions. The range contraction of red‐billed oxpeckers (Buphagus erythrorhynchus) in South Africa is partly a result of the widespread use of acaracides (i.e., mainly cattle dips), toxic to both ticks and oxpeckers. We predicted the habitat suitability of red‐billed oxpeckers in South Africa using ensemble models to assist the ongoing reintroduction efforts and to identify new reintroduction sites for population recovery. The distribution of red‐billed oxpeckers was influenced by moderate to high tree cover, woodland habitats, and starling density (a proxy for cavity‐nesting birds) with regard to nest‐site characteristics. Consumable resources (host and tick density), bioclimate, surface water body density, and proximity to protected areas were other influential predictors. Our models estimated 42,576.88–98,506.98 km2 of highly suitable habitat (0.5–1) covering the majority of Limpopo, Mpumalanga, North West, a substantial portion of northern KwaZulu‐Natal (KZN) and the Gauteng Province. Niche models reliably predicted suitable habitat in 40%–61% of the reintroduction sites where breeding is currently successful. Ensemble, boosted regression trees and generalized additive models predicted few suitable areas in the Eastern Cape and south of KZN that are part of the historic range. A few southern areas in the Northern Cape, outside the historic range, also had suitable sites predicted. Our models are a promising decision support tool for guiding reintroduction programs at macroscales. Apart from active reintroductions, conservation programs should encourage farmers and/or landowners to use oxpecker‐compatible agrochemicals and set up adequate nest boxes to facilitate the population recovery of the red‐billed oxpecker, particularly in human‐modified landscapes. To ensure long‐term conservation success, we suggest that the effect of anthropogenic threats on habitat distributions should be investigated prior to embarking on a reintroduction program, as the habitat in the historical range may no longer be viable for current bird populations.  相似文献   

6.
The relationship between oxpeckers and African ungulates has traditionally been considered mutualistic, because the birds were thought to reduce the tick loads of their hosts. However, recent field studies have questioned the validity of this assumption. Red‐billed oxpeckers were found to have no impact on the number of ticks living on domestic cattle and they also prolonged the healing time of wounds (Weeks [1999] Anim Behav 58:1253–9; Weeks [2000] Behav Ecol 11:154–60). One of the important limitations of these studies is the fact that the two species did not coevolve, and therefore the results may not be representative of the relationships between oxpeckers and their native African ungulate hosts in general. We carried out observations between red‐billed oxpeckers and one of their natural host species, the black rhino, in captivity, to investigate their relationship. We found that the rhinos had oxpeckers present on them for almost half (approximately 45%) the time that the two species were in the same enclosure. The oxpeckers spent a large proportion (approximately 40%) of their time on the rhinos foraging, and mostly at wounds. We observed oxpeckers opening wounds on their hosts for the first time; they created four new wounds on the female rhino and nine on the male. Although the rhinos were intolerant of the presence of the oxpeckers at wounds, only approximately 43% of their attempts at removal were successful. Therefore if oxpeckers are housed with any of their native hosts in captivity, observations should be carried out to determine the activities of the oxpeckers on those hosts. Zoo Biol 23:347–354, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

7.
Mechanisms of on-host habitat selection of parasites are important to the understanding of host-parasite interactions and evolution. To this end, it is important to separate the factors driving parasite micro-habitat selection from those resulting from host anti-parasite behaviour. We experimentally investigated whether tick infestation patterns on songbirds are the result of an active choice by the ticks themselves, or the outcome of songbird grooming behaviour. Attachment patterns of three ixodid tick species with different ecologies and host specificities were studied on avian hosts. Ixodes arboricola, Ixodes ricinus and Ixodes frontalis were put on the head, belly and back of adult great tits (Parus major) and adult domestic canaries (Serinus canaria domestica) which were either restricted or not in their grooming capabilities. Without exception, ticks were eventually found on a bird’s head. When we gave ticks full opportunities to attach on other body parts – in the absence of host grooming – they showed lower attachment success. Moreover, ticks moved from these other body parts to the host's head when given the opportunity. This study provides evidence that the commonly observed pattern of ticks feeding on songbirds’ heads is the result of an adaptive behavioural strategy. Experimental data on a novel host species, the domestic canary, and a consistent number of published field observations, strongly support this hypothesis. We address some proximate and ultimate causes that may explain parasite preference for this body part in songbirds. The link found between parasite micro-habitat preference and host anti-parasite behaviour provides further insight into the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of hosts, ectoparasites and the micro-pathogens for which they are vectors.  相似文献   

8.

Ticks are globally renowned vectors for numerous zoonoses, and birds have been identified as important hosts for several species of hard ticks (Acari: Ixodidae) and tick-borne pathogens. Many European bird species overwinter in Africa and Western Asia, consequently migrating back to breeding grounds in Europe in the spring. During these spring migrations, birds may transport exotic tick species (and associated pathogens) to areas outside their typical distribution ranges. In Finland, very few studies have been conducted regarding ticks parasitizing migrating or local birds, and existing data are outdated, likely not reflecting the current situation. Consequently, in 2018, we asked volunteer bird ringers to collect ticks from migrating and local birds, to update current knowledge on ticks found parasitizing birds in Finland. In total 430 ticks were collected from 193 birds belonging to 32 species, caught for ringing between 2018 and 2020. Furthermore, four Ixodes uriae were collected from two roosting islets of sea birds in 2016 and 2020. Ticks collected on birds consisted of: Ixodes ricinus (n?=?421), Ixodes arboricola (4), Ixodes lividus (2) and Hyalomma marginatum (3). Ixodes ricinus loads (nymphs and larvae) were highest on thrushes (Passeriformes: Turdidae) and European robins (Erithacus rubecula). The only clearly imported exotic tick species was H. marginatum. This study forms the second report of both I. uriae and I. arboricola from Finland, and possibly the northernmost observation of I. arboricola from Europe. The importation of exotic tick species by migrating birds seems a rare occurrence, as over 97% of all ticks collected from birds arriving in Finland during their spring migrations were I. ricinus, a species native to and abundant in Finland.

  相似文献   

9.
Increasing winter temperatures are expected to cause seasonal activity of Ixodes ricinus ticks to extend further into the winter. We caught birds during winter months (November to February) at a site in the west of Scotland over a period of 24 years (1993–1994 to 2016–2017) to quantify numbers of attached I. ricinus and to relate these to monthly mean temperature. No adult ticks were found on any of the 21,731 bird captures, but 946 larvae and nymphs were found, with ticks present in all winter months, on 16 different species of bird hosts. All ticks identified to species were I. ricinus. I. ricinus are now active throughout the year in this area providing temperature permits. No I. ricinus were present in seven out of eight months when the mean temperature was below 3.5º C. Numbers of I. ricinus attached to birds increased rapidly with mean monthly temperatures above 7º C. Winter temperatures in Scotland have been above the long‐term average in most years in the last two decades, and this is likely to increase risk of tick‐borne disease.  相似文献   

10.
A total of 7,334 crop and/or stomach contents from 239 species of South African birds were examined for ticks. Only 36 ticks were found: 24 in 21 cattle egret (Bubulcus ibis), four in four helmeted guineafowl (Numida meleagris), one in a crowned plover (Vanellus coronatus) and seven in a single lilacbreasted roller (Coracias caudata). In most cases identification of the ticks was not possible although the genera Boophilus, Hyalomma and Rhipicephalus were represented. With the exception of the oxpeckers which were not represented in this survey, we conclude that predation by birds on ticks is uncommon in South Africa.  相似文献   

11.
The diversity and abundance of questing ticks and ticks parasitizing birds was assessed during 1?year in two recreational forests in western Portugal, a suburban forest and an enclosed game area. The aim of this study was to assess the distribution and seasonality of tick species and to understand the role of bird species as hosts for ticks. Ixodes ricinus was the most abundant questing tick collected in the enclosed game area, whereas in the suburban forest, only three ticks were collected by blanket dragging. Tick species parasitizing birds included I. ricinus, I. frontalis, I. arboricola, I. acuminatus, Haemaphysalis punctata, Hyalomma marginatum and H. lusitanicum. This is the first record of I. arboricola in Portugal. Tick prevalence and intensity of infestation differed between study areas and was higher in birds from the game area where a large population of deer and wild boar may support tick populations. Ground and shrub dwelling bird species such as Turdus merula, Erithacus rubecula and Sylvia melanocephala were the most heavily parasitized by ticks, but the importance of different bird species as hosts of larvae and nymphs of I. ricinus and I. frontalis differed. Therefore, different bird species may contribute differently for tick population maintenance.  相似文献   

12.
rophic relations between ixodid ticks of the world fauna parasitizing as adults on birds are analyzed. These ticks include 60 out of 650 species of the family Ixodidae and belong to the genera Ixodes, Haemaphysalis, and Amblyomma. Relations between birds and ticks of the genus Ixodes are most ancient. Colonial marine birds seem to be the first hosts of ixodid ticks in the class of birds. Trophic specialization of ticks is not associated with bird taxa, because in most cases no tick specificity is caused by either phylogenetic features of hosts, or specific environmental conditions.  相似文献   

13.
New Neotropical records are presented for ticks belonging to the Ixodes auritulus Neumann, 1904, species group, together with a review of hosts and localities from which members of this complex have previously been collected. The range of the I. auritulus species group is now understood to include Colombia, and 15 bird species are listed as new hosts. From Guatemala to southern Argentina and Chile, specimens of the I. auritulus group have been found on birds belonging to the orders Ciconiiformes, Columbiformes, Falconiformes, Galliformes, Passeriformes, Piciformes, Procellariiformes and Tinamiformes. Passeriform birds are probably the principal hosts, sustaining tick populations throughout the Neotropics. Collection data have yielded four areas – southern South America (from 56° S to 51° S), southern Brazil (25° S–22° S), south-central Peru (14° S–10° S) and Central America (10° N–15° N) – where the I. auritulus group appears to commonly parasitize birds, but additional collections may show that the range of this complex is less discontinuous than currently perceived. Several morphological differences are described for ticks within and among these areas, but it is still unclear whether the I. auritulus group comprises more than one species.  相似文献   

14.
Migratory birds are known to play a role as long-distance vectors for many microorganisms. To investigate whether this is true of rickettsial agents as well, we characterized tick infestation and gathered ticks from 13,260 migratory passerine birds in Sweden. A total of 1127 Ixodes spp. ticks were removed from these birds and the extracted DNA from 957 of them was available for analyses. The DNA was assayed for detection of Rickettsia spp. using real-time PCR, followed by DNA sequencing for species identification. Rickettsia spp. organisms were detected in 108 (11.3%) of the ticks. Rickettsia helvetica, a spotted fever rickettsia associated with human infections, was predominant among the PCR-positive samples. In 9 (0.8%) of the ticks, the partial sequences of 17kDa and ompB genes showed the greatest similarity to Rickettsia monacensis, an etiologic agent of Mediterranean spotted fever-like illness, previously described in southern Europe as well as to the Rickettsia sp.IrITA3 strain. For 15 (1.4%) of the ticks, the 17kDa, ompB, gltA and ompA genes showed the greatest similarity to Rickettsia sp. strain Davousti, Rickettsia japonica and Rickettsia heilongjiangensis, all closely phylogenetically related, the former previously found in Amblyomma tholloni ticks in Africa and previously not detected in Ixodes spp. ticks. The infestation prevalence of ticks infected with rickettsial organisms was four times higher among ground foraging birds than among other bird species, but the two groups were equally competent in transmitting Rickettsia species. The birds did not seem to serve as reservoir hosts for Rickettsia spp., but in one case it seems likely that the bird was rickettsiemic and that the ticks had acquired the bacteria from the blood of the bird. In conclusion, migratory passerine birds host epidemiologically important vector ticks and Rickettsia species and contribute to the geographic distribution of spotted fever rickettsial agents and their diseases.  相似文献   

15.

Birds are important hosts for various tick species, playing a significant role in their biological life cycle and dispersion. In this study, we investigated tick infestations on birds trapped in an urban remnant of Atlantic Forest in Pernambuco state, Brazil. From February 2015 to March 2017, 541 birds belonging to 52 species were trapped with mist nets and examined for ectoparasites. Birds trapped in the late successional forest were significantly more infested than birds trapped in the early successional forest. In the same way, ectoparasite infestation varied significantly according to bird weight and collection plot. Overall, 198 birds (36.6%) belonging to 27 species were parasitized by ectoparasites (i.e., ticks, lice and/or mites). Ectoparasites were effectively collected from 111 birds, of which 99 belonging to 20 species were infested by ticks (n?=?261), namely, Amblyomma longirostre (13 nymphs), Amblyomma nodosum (21 nymphs), Amblyomma varium (one nymph), and Amblyomma spp. (five nymphs and 221 larvae). Most of the ticks (>?90%) were collected from Passeriformes. This study provides the second record of A. varium in Pernambuco state and confirms that birds, especially Passeriformes, are important hosts for larvae and nymphs of Amblyomma spp. in the Atlantic Forest biome of Pernambuco.

  相似文献   

16.
Wild birds are important hosts for vector-borne pathogens, especially those borne by ticks. However, few studies have been conducted on the role of different bird species within a community as hosts of vector-borne pathogens. This study addressed individual and species factors that could explain the burden of Ixodes ricinus on forest birds during the reproductive periods of both vectors and hosts. The goal was to identify which bird species contribute the most to the tick population at the community level. Birds were mist-netted on four plots in 2008 and on seven plots in 2009 in two forests (Sénart and Notre Dame, near Paris, France). The dependence of the tick load per bird upon environmental conditions (questing nymph density, year and plot) and on host species traits (species, age, sex, body size, vertical space use, level of innate and acquired immunity) was analysed. Finally, the relative contribution of each bird species to the local dynamics of ticks was estimated, while accounting for their respective abundance. Tick burden differed markedly between bird species and varied according to questing nymph density. Bird species with a high body mass, those that forage low in the vegetation, and those that had a high innate immune response and a high spleen mass were more likely to have a high tick burden. Four species (the Common Blackbird, Turdus merula, the European Robin, Erithacus rubecula, the Song Thrush, Turdus philomelos, and the Winter Wren, Troglodytes troglodytes) hosted more than 90% of the ticks in the local bird community. These species, and particularly T. merula which was host to a high proportion of the nymphs, are likely to contribute significantly to the circulation of pathogens for which they are competent, such as the agent of Lyme borreliosis.  相似文献   

17.
The results of studies in the pessimum of the taiga tick (Ixodes persulcatus Sch., 1930) range in the Urals have shown that this species occurs in the regions at latitudes of up to 60°50′ N. In Northern Ural mountains, the ticks show preference for secondary small-leaved forests growing on southern slopes, where their abundance along census routes reaches 7 ind./km. The abundance and distribution of taiga ticks hosts, birds and small mammals, have been estimated in the main types of their habitats. Larvae and nymphs of the taiga tick have been found on nine bird and seven small mammal species, with the main parasitic load falling on the northern red-backed vole (Clethrionomys rutilus P., 1779), which is widespread and abundant in the greater part of the study area. Molecular biological analysis of I. persulcatus ticks and blood samples from their hosts has revealed the presence of nucleic acids of pathogenic microorganisms A. phagocytophilum, E. muris, and A. burgdorferi sensu lato, the RNA of tick-borne encephalitis virus, and the DNA of Babesia microti.  相似文献   

18.
Migratory birds may disperse parasites across ecological barriers, and recent climate change may alter the pattern of ectoparasite dispersal via changed patterns of bird migration. In order to document the parasitization of migratory birds by Ixodidae ticks on Jeju Island in Korea, we examined 934 migratory birds comprising 75 species for ticks from 2010 to 2012. In total, 313 ticks were collected from 74 migratory birds across 17 avian species and identified based on morphological keys. These ticks represented six species: Haemaphysalis flava, H. formosensis, H. longicornis, H. concinna, Ixodes turdus and I. nipponensis. Of particular note was the presence of H. formosensis, a species not previously reported to have been found in Korea, and H. concinna, which had not been previously reported on Jeju Island. The dominant tick species found were H. flava (226 ticks, 72.2 %) and I. turdus (54 ticks, 17.3 %), and ground-dwelling thrushes such as Pale thrushes (Turdus pallidus; 39 birds, 52.7 %) were the most important hosts. Although H. longicornis is the most abundant and prevalent terrestrial tick on Jeju Island, the species accounted for only 3.8 % of the total ticks collected in this study, suggesting that ticks on migratory birds may differ from the local tick fauna and that exotic ticks may be introduced via migratory birds. Therefore, long-term programs for tick and tick-borne disease surveillance are recommended to understand the role of migratory animals in the introduction of exotic species and associated pathogens and in life cycles of ticks at different stages in this region.  相似文献   

19.
Aims: To predict the risk of incursion of Crimean‐Congo haemorrhagic fever virus (CCHFV) in livestock in Europe introduced through immature Hyalomma marginatum ticks on migratory birds under current conditions and in the decade 2075–2084 under a climate‐change scenario. Methods and Results: A spatial risk map of Europe comprising 14 282 grid cells (25 × 25 km) was constructed using three data sources: (i) ranges and abundances of four species of bird which migrate from sub‐Saharan Africa to Europe each spring, namely Willow warbler (Phylloscopus trochilus), Northern wheatear (Oenanthe oenanthe), Tree pipit (Anthus trivialis) and Common quail (Coturnix coturnix); (ii) UK Met Office HadRM3 spring temperatures for prediction of moulting success of immature H. marginatum ticks and (iii) livestock densities. On average, the number of grid cells in Europe predicted to have at least one CCHFV incursion in livestock in spring was 1·04 per year for the decade 2005–2014 and 1·03 per year for the decade 2075–2084. In general with the assumed climate‐change scenario, the risk increased in northern Europe but decreased in central and southern Europe, although there is considerable local variation in the trends. Conclusions: The absolute risk of incursion of CCHFV in livestock through ticks introduced by four abundant species of migratory bird (totalling 120 million individual birds) is very low. Climate change has opposing effects, increasing the success of the moult of the nymphal ticks into adults but decreasing the projected abundance of birds by 34% in this model. Significance and Impact of the Study: For Europe, climate change is not predicted to increase the overall risk of incursion of CCHFV in livestock through infected ticks introduced by these four migratory bird species.  相似文献   

20.
Ogada DL  Gadd ME  Ostfeld RS  Young TP  Keesing F 《Oecologia》2008,156(2):387-397
Large native mammals are declining dramatically in abundance across Africa, with strong impacts on both plant and animal community dynamics. However, the net effects of this large-scale loss in megafauna are poorly understood because responses by several ecologically important groups have not been assessed. We used a large-scale, replicated exclusion experiment in Kenya to investigate the impacts of different guilds of native and domestic large herbivores on the diversity and abundance of birds over a 2-year period. The exclusion of large herbivorous native mammals, including zebras (Equus burchelli), giraffes (Giraffa camelopardalis), elephants (Loxodonta africana), and buffalos (Syncerus caffer), increased the diversity of birds by 30%. Most of this effect was attributable to the absence of elephants and giraffes; these megaherbivores reduced both the canopy area of subdominant woody vegetation and the biomass of ground-dwelling arthropods, and both of these factors were good predictors of the diversity of birds. The canopy area of subdominant trees was positively correlated with the diversity of granivorous birds. The biomass of ground-dwelling arthropods was positively correlated with the diversity of insectivorous birds. Our results suggest that most native large herbivores are compatible with an abundant and diverse bird fauna, as are cattle if they are at a relatively low stocking rate. Future research should focus on determining the spatial arrangements and densities of megaherbivores that will optimize both megaherbivore abundance and bird diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号