首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ni accumulation and utilization were studied in two strains of marine Synechococcus, isolated from both coastal (CC9311; clade I) and open-ocean (WH8102; clade III) environments, for which complete genome sequences are available. Both strains have genes encoding an Ni-containing urease and when grown on urea without Ni become Ni-N colimited. The Ni requirements of these strains also depend upon the genomic complement of genes encoding superoxide dismutase (SOD). WH8102, with a gene encoding only an Ni-SOD, has a novel obligate requirement for Ni, regardless of the N source. Reduced SOD activity in Ni-depleted cultures of WH8102 supports the link of this strain's Ni requirement to Ni-SOD. The genome of CC9311 contains a gene for a Cu/Zn-SOD in addition to a predicted pair of Ni-SODs, yet this strain cannot grow without Ni on NO3 and can grow only slowly on NH4+ without Ni, implying that the Cu/Zn-SOD cannot completely replace Ni-SOD in marine cyanobacteria. CC9311 does have a greater tolerance for Ni starvation. Both strains increase their Ni uptake capabilities and actively bioconcentrate Ni in response to decreasing extracellular and intracellular Ni. The changes in Ni uptake rates were more pronounced in WH8102 than in CC9311 and for growth on urea or nitrate than for growth on ammonia. These results, combined with an analysis of fully sequenced marine cyanobacterial genomes, suggest that the growth of many marine Synechococcus and all Prochlorococcus strains is dependent upon Ni.  相似文献   

2.
Two coastal Synechococcus stains PCC 7002 and CC9311 and one oceanic strain WH8102 were cultured with 4–1000 nM Fe in Aquil medium. Compared with those under iron‐replete conditions, their growth rates were significantly decreased by 59% for WH8102 at 15 nM Fe, by 37% for CC9311 at 15 nM Fe and by 57% for PCC 7002 at 4 nM Fe. Among these three strains, PCC 7002 was the most tolerant to iron limitation while WH8102 was the most sensitive to iron limitation. For each strain under the same iron concentration, the growth rates calculated from the minimal fluorescence yield and cell concentration showed no significant difference. The linear correlation was established between the minimal fluorescence yield and cell concentration although the minimal fluorescence yield per cell varied depending on the strains and iron levels. Under iron‐replete conditions, the minimal fluorescence yield per cell was 100‐fold higher for the phycoerythrin‐lacking strain PCC 7002 than two phycoerythrin‐containing strains WH8102 and CC9311. Under iron‐deplete conditions, it was increased respectively by 128% and 7% for WH8102 and CC9311 but was decreased by 30% for PCC 7002. Furthermore, the minimal fluorescence yield per cell for PCC 7002 and CC9311 showed little difference throughout the light and dark diel cycle. However, it was significantly higher for WH8102 in the daytime than in the dark.  相似文献   

3.
Synechococcus species are important primary producers in coastal and open‐ocean ecosystems. When nitrate was provided as the sole nitrogen source, nickel starvation inhibited the growth of strains WH8102 and WH7803, while it had little effect on two euryhaline strains, WH5701 and PCC 7002. Nickel was required for the acclimation of Synechococcus WH7803 to low iron and high light. In WH8102 and WH7803, nickel starvation decreased the linear electron transport activity, slowed down QA reoxidation, but increased the connectivity factor between individual photosynthetic units. Under such conditions, the reduction of their intersystem electron transport chains was expected to increase, and their cyclic electron transport around PSI would be favored. Nickel starvation decreased the total superoxide dismutase (SOD) activity of WH8102 and WH7803 by 30% and 15% of the control, respectively. The protein‐bound 63Ni of the oceanic strain WH8102 comigrated with SOD activity on nondenaturing gels and thus provided additional evidence for the existence of active NiSOD in Synechococcus WH8102. In WH7803, it seems likely that nickel starvation affected other metabolic pathways and thus indirectly affected the total SOD activity.  相似文献   

4.
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.  相似文献   

5.
Diverse strains of the marine planktonic cyanobacterium Synechococcus sp. show consistent differences in their susceptibility to predation. We used mutants of Sargasso Sea strain WH8102 (clade III) to test the hypothesis that cell surface proteins play a role in defence against predation by protists. Predation rates by the heterotrophic dinoflagellate Oxyrrhis marina on mutants lacking the giant SwmB protein were always higher (by 1.6 to 3.9×) than those on wild-type WH8102 cells, and equalled predation rates on a clade I strain (CC9311). In contrast, absence of the SwmA protein, which comprises the S-layer (surface layer of the cell envelope that is external to the outer membrane), had no effect on predation by O. marina. Reductions in predation rate were not due to dissolved substances in Synechococcus cultures, and could not be accounted for by variations in cell hydrophobicity. We hypothesize that SwmB defends Synechococcus WH8102 by interfering with attachment of dinoflagellate prey capture organelles or cell surface receptors. Giant proteins are predicted in the genomes of multiple Synechococcus isolates, suggesting that this defence strategy may be more general. Strategies for resisting predation will contribute to the differential competitive success of different Synechococcus groups, and to the diversity of natural picophytoplankton assemblages.  相似文献   

6.
Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also identified three novel clades not previously recognized. Phylogenetic analyses showed one clade, containing halotolerant isolates lacking phycoerythrin (PE) and including strains capable, or not, of utilizing nitrate as the sole N source, which clustered within the MC-A (Synechococcus subcluster 5.1) lineage. Two copies of the 16S rRNA gene are present in marine Synechococcus genomes, and cloning and sequencing of these copies from Synechococcus sp. strain WH 7803 and genomic information from Synechococcus sp. strain WH 8102 reveal these to be identical. Based on the 16S rDNA sequence information, clade-specific oligonucleotides for the marine Synechococcus genus were designed and their specificity was optimized. Using dot blot hybridization technology, these probes were used to determine the in situ community structure of marine Synechococcus populations in the Red Sea at the time of a Synechococcus maximum during April 1999. A predominance of genotypes representative of a single clade was found, and these genotypes were common among strains isolated into culture. Conversely, strains lacking PE, which were also relatively easily isolated into culture, represented only a minor component of the Synechococcus population. Genotypes corresponding to well-studied laboratory strains also appeared to be poorly represented in this stratified water column in the Red Sea.  相似文献   

7.
Lipopolysaccharide (LPS) is the first defense against changing environmental factors for many bacteria. Here, we report the first structure of the LPS from cyanobacteria based on two strains of marine Synechococcus, WH8102 and CC9311. While enteric LPS contains some of the most complex carbohydrate residues in nature, the full-length versions of these cyanobacterial LPSs have neither heptose nor 3-deoxy-d-manno-octulosonic acid (Kdo) but instead 4-linked glucose as their main saccharide component, with low levels of glucosamine and galacturonic acid also present. Matrix-assisted laser desorption ionization mass spectrometry of the intact minimal core LPS reveals triacylated and tetraacylated structures having a heterogeneous mix of both hydroxylated and nonhydroxylated fatty acids connected to the diglucosamine backbone and a predominantly glucose outer core-like region for both strains. WH8102 incorporated rhamnose in this region as well, contributing to differences in sugar composition and possibly nutritional differences between the strains. In contrast to enteric lipid A, which can be liberated from LPS by mild acid hydrolysis, lipid A from these organisms could be produced by only two novel procedures: triethylamine-assisted periodate oxidation and acetolysis. The lipid A contains odd-chain hydroxylated fatty acids, lacks phosphate, and contains a single galacturonic acid. The LPS lacks any limulus amoebocyte lysate gelation activity. The highly simplified nature of LPSs from these organisms leads us to believe that they may represent either a primordial structure or an adaptation to the relatively higher salt and potentially growth-limiting phosphate levels in marine environments.Lipopolysaccharide (LPS) in the outer membrane layer is known to be the first line of defense against environmental factors in many gram-negative organisms, preventing lysis by complement, antimicrobial peptides and detergents (17, 21, 47). In proteobacteria, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and phosphate are key parts of the conserved inner core of the LPS which connects the less-well-conserved outer core and sometimes an attached polysaccharide to the lipid A anchor. Why heptose is so well conserved is a mystery, but the prevalence of Kdo and phosphate may be related to the charge which they impart to the outer membrane and to their ability to bind divalent cations. The Kdo-phosphate metal binding center is capable of binding calcium with a dissociation constant (Kd) of 12 to 13 μM (28). This high-affinity binding of divalent cations is known to be necessary for the low permeability of LPS bilayers to some antibiotics (32), and it has been hypothesized that divalent cation cross-bridges may link LPS molecules on the bacterial cell surfaces of enterobacteria into a giant complex with very low membrane permeability (16).Though the LPSs of many proteobacteria are well characterized, the LPSs from cyanobacteria are much less studied. The cell envelopes of cyanobacteria resemble those of gram-negative bacteria structurally, consisting of a cytoplasmic membrane, a peptidoglycan layer, an outer membrane containing LPS, and sometimes additional structures (9, 14). Previous chemical analyses have shown the LPS of some cyanobacteria to be devoid of phosphate, Kdo, and heptose (11, 12, 42, 43). Given the lack of Kdo in these organisms as well as the fact that the lability of the Kdo-glucosamine ketosidic linkage allows for the mild acid hydrolysis of LPS to lipid A, it is perhaps not surprising that many attempts at hydrolysis of cyanobacterial LPS to lipid A have failed (for an example, see reference 29).Within the cyanobacteria, the genus Synechococcus represents a polyphyletic group of unicellular morphotypes. Synechococcus cells are found in both freshwater and marine environments. Organisms from group A Synechococcus and its sister taxon Prochlorococcus are extremely important primary producers in marine environments, with multiple “clades” similar to “species” described for other bacteria, dominating in different environments (3, 22). Unlike enterobacteria, which must frequently contend with an onslaught of host factors, members of the Synechococcus face grazing by protists and bacteriophages as their primary survival challenges.The genome of Synechococcus sp. strain CC9311 has been shown to be devoid of the genes for Kdo biosynthesis, while strain WH8102 has several putative genes for Kdo biosynthesis (18, 20). This suggests that the LPS of cyanobacteria could be significantly different from that of enteric bacteria and could show species/strain variation as well. A comparison of the structures of LPS from cyanobacteria and enterobacteria would afford a unique opportunity to understand which elements of LPS structure are essential to bacterial survival and which are adaptations to the environment in which the bacteria live. To further this understanding, we present here an analysis of the LPS structure from two strains of marine Synechococcus: an open-ocean-dwelling strain having the putative genes for Kdo biosynthesis (strain WH8102; clade III) and a coastal strain lacking these genes (strain CC9311; clade I). We further present two novel methods for producing lipid A from bacteria lacking the labile Kdo ketosidic linkage.  相似文献   

8.
Vanadium‐dependent bromoperoxidases (VBPOs) are characterized by the ability to oxidize halides using hydrogen peroxide. These enzymes are well‐studied in eukaryotic macroalgae and are known to produce a variety of brominated secondary metabolites. Though genes have been annotated as VBPO in multiple prokaryotic genomes, they remain uncharacterized. The genome of the coastal marine cyanobacterium Synechococcus sp. CC9311 encodes a predicted VBPO (YP_731869.1, sync_2681), and in this study, we show that protein extracts from axenic cultures of Synechococcus possess bromoperoxidase activity, oxidizing bromide and iodide, but not chloride. In‐gel activity assays of Synechococcus proteins separated using PAGE reveal a single band having VBPO activity. When sequenced via liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS), peptides from the band aligned to the VBPO sequence predicted by the open reading frame (ORF) sync_2681. We show that a VBPO gene is present in a closely related strain, Synechococcus sp. WH8020, but not other clade I Synechococcus strains, consistent with recent horizontal transfer of the gene into Synechococcus. Diverse cyanobacterial‐like VBPO genes were detected in a pelagic environment off the California coast using PCR. Investigation of functional VBPOs in unicellular cyanobacteria may lead to discovery of novel halogenated molecules and a better understanding of these organisms’ chemical ecology and physiology.  相似文献   

9.
Picocyanobacteria from the genus Synechococcus are ubiquitous in ocean waters. Their phylogenetic and genomic diversity suggests ecological niche differentiation, but the selective forces influencing this are not well defined. Marine picocyanobacteria are sensitive to Cu toxicity, so adaptations to this stress could represent a selective force within, and between, ‘species’, also known as clades. Here, we compared Cu stress responses in cultures and natural populations of marine Synechococcus from two co‐occurring major mesotrophic clades (I and IV). Using custom microarrays and proteomics to characterize expression responses to Cu in the lab and field, we found evidence for a general stress regulon in marine Synechococcus. However, the two clades also exhibited distinct responses to copper. The Clade I representative induced expression of genomic island genes in cultures and Southern California Bight populations, while the Clade IV representative downregulated Fe‐limitation proteins. Copper incubation experiments suggest that Clade IV populations may harbour stress‐tolerant subgroups, and thus fitness tradeoffs may govern Cu‐tolerant strain distributions. This work demonstrates that Synechococcus has distinct adaptive strategies to deal with Cu toxicity at both the clade and subclade level, implying that metal toxicity and stress response adaptations represent an important selective force for influencing diversity within marine Synechococcus populations.  相似文献   

10.
11.
Unicellular marine cyanobacteria are ubiquitous in both coastal and oligotrophic regimes. The contribution of these organisms to primary production and nutrient cycling is substantial on a global scale. Natural populations of marine Synechococcus strains include multiple genetic lineages, but the link, if any, between unique phenotypic traits and specific genetic groups is still not understood. We studied the genetic diversity (as determined by the DNA-dependent RNA polymerase rpoC1 gene sequence) of a set of marine Synechococcus isolates that are able to swim. Our results show that these isolates form a monophyletic group. This finding represents the first example of correspondence between a physiological trait and a phylogenetic group in marine Synechococcus. In contrast, the phycourobilin (PUB)/phycoerythrobilin (PEB) pigment ratios of members of the motile clade varied considerably. An isolate obtained from the California Current (strain CC9703) displayed a pigment signature identical to that of nonmotile strain WH7803, which is considered a model for low-PUB/PEB-ratio strains, whereas several motile strains had higher PUB/PEB ratios than strain WH8103, which is considered a model for high-PUB/PEB-ratio strains. These findings indicate that the PUB/PEB pigment ratio is not a useful characteristic for defining phylogenetic groups of marine Synechococcus strains.  相似文献   

12.
Grazing mortality of the marine phytoplankton Synechococcus is dominated by planktonic protists, yet rates of consumption and factors regulating grazer-Synechococcus interactions are poorly understood. One aspect of predator-prey interactions for which little is known are the mechanisms by which Synechococcus avoids or resists predation and, in turn, how this relates to the ability of Synechococcus to support growth of protist grazer populations. Grazing experiments conducted with the raptorial dinoflagellate Oxyrrhis marina and phylogenetically diverse Synechococcus isolates (strains WH8102, CC9605, CC9311, and CC9902) revealed marked differences in grazing rates-specifically that WH8102 was grazed at significantly lower rates than all other isolates. Additional experiments using the heterotrophic nanoflagellate Goniomonas pacifica and the filter-feeding tintinnid ciliate Eutintinnis sp. revealed that this pattern in grazing susceptibility among the isolates transcended feeding guilds and grazer taxon. Synechococcus cell size, elemental ratios, and motility were not able to explain differences in grazing rates, indicating that other features play a primary role in grazing resistance. Growth of heterotrophic protists was poorly coupled to prey ingestion and was influenced by the strain of Synechococcus being consumed. Although Synechococcus was generally a poor-quality food source, it tended to support higher growth and survival of G. pacifica and O. marina relative to Eutintinnis sp., indicating that suitability of Synechococcus varies among grazer taxa and may be a more suitable food source for the smaller protist grazers. This work has developed tractable model systems for further studies of grazer-Synechococcus interactions in marine microbial food webs.  相似文献   

13.
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.  相似文献   

14.
Phycoerythrin-containing Synechococcus species are considered to be major primary producers in nutrient-limited gyres of subtropical and tropical oceanic provinces, and the cyanophages that infect them are thought to influence marine biogeochemical cycles. This study begins an examination of the effects of nutrient limitation on the dynamics of cyanophage/Synechococcus interactions in oligotrophic environments by analyzing the infection kinetics of cyanophage strain S-PM2 (Cyanomyoviridae isolated from coastal water off Plymouth, UK) propagated on Synechococcus sp. WH7803 grown in either phosphate-deplete or phosphate-replete conditions. When the growth of Synechococcus sp. WH7803 in phosphate-deplete medium was followed after infection with cyanophage, an 18-h delay in cell lysis was observed when compared to a phosphate-replete control. Synechococcus sp. WH7803 cultures grown at two different rates (in the same nutritional conditions) both lysed 24 h postinfection, ruling out growth rate itself as a factor in the delay of cell lysis. One-step growth kinetics of S-PM2 propagated on host Synechococcus sp. WH7803, grown in phosphate-deplete and-replete media, revealed an apparent 80% decrease in burst size in phosphate-deplete growth conditions, but phage adsorption kinetics ofS-PM2 under these conditions showed no differences. These results suggested that the cyanophages established lysogeny in response to phosphate-deplete growth of host cells. This suggestion was supported by comparison of the proportion of infected cells that lysed under phosphate-replete and-deplete conditions, which revealed that only 9.3% of phosphate-deplete infected cells lysed in contrast to 100% of infected phosphate-replete cells. Further studies with two independent cyanophage strains also revealed that only approximately 10% of infected phosphate-deplete host cells released progeny cyanophages. These data strongly support the concept that the phosphate status of the Synechococcus cell will have a profound effect on the eventual outcome of phage-host interactions and will therefore exert a similarly extensive effect on the dynamics of carbon flow in the marine environment.  相似文献   

15.
Picocyanobacteria of the genus Synechococcus are important contributors to marine primary production and are ubiquitous in the world's oceans. This genus is genetically diverse, and at least 10 discrete lineages or clades have been identified phylogenetically. However, little if anything is known about the genetic attributes which characterize particular lineages or are unique to specific strains. Here, we used a suppression subtractive hybridization (SSH) approach to identify strain- and clade-specific genes in two well-characterized laboratory strains, Synechococcus sp. strain WH8103 (clade III) and Synechococcus sp. strain WH7803 (clade V). Among the genes that were identified as potentially unique to each strain were genes encoding proteins that may be involved in specific predator avoidance, including a glycosyltransferase in strain WH8103 and a permease component of an ABC-type polysaccharide/polyol phosphate export system in WH7803. During this work the genome of one of these strains, WH7803, became available. This allowed assessment of the number of false-positive sequences (i.e., sequences present in the tester genome) present among the SSH-enriched sequences. We found that approximately 9% of the WH8103 sequences were potential false-positive sequences, which demonstrated that caution should be used when this technology is used to assess genomic differences in genetically similar bacterial strains.  相似文献   

16.
Seasonal variation in the phylogenetic composition of Synechococcus assemblages in estuarine and coastal waters of Hong Kong was examined through pyrosequencing of the rpoC1 gene. Sixteen samples were collected in 2009 from two stations representing estuarine and ocean-influenced coastal waters, respectively. Synechococcus abundance in coastal waters gradually increased from 3.6 × 103 cells ml−1 in March, reaching a peak value of 5.7 × 105 cells ml−1 in July, and then gradually decreased to 9.3 × 103 cells ml−1 in December. The changes in Synechococcus abundance in estuarine waters followed a pattern similar to that in coastal waters, whereas its composition shifted from being dominated by phycoerythrin-rich (PE-type) strains in winter to phycocyanin-only (PC-type) strains in summer owing to the increase in freshwater discharge from the Pearl River and higher water temperature. The high abundance of PC-type Synechococcus was composed of subcluster 5.2 marine Synechococcus, freshwater Synechococcus (F-PC), and Cyanobium. The Synechococcus assemblage in the coastal waters, on the other hand, was dominated by marine PE-type Synechococcus, with subcluster 5.1 clades II and VI as the major lineages from April to September, when the summer monsoon prevailed. Besides these two clades, clade III cooccurred with clade V at relatively high abundance in summer. During winter, the Synechococcus assemblage compositions at the two sites were similar and were dominated by subcluster 5.1 clades II and IX and an undescribed clade (represented by Synechococcus sp. strain miyav). Clade IX Synechococcus was a relatively ubiquitous PE-type Synechococcus found at both sites, and our study demonstrates that some strains of the clade have the ability to deal with large variation of salinity in subtropical estuarine environments. Our study suggests that changes in seawater temperature and salinity caused by the seasonal variation of monsoonal forcing are two major determinants of the community composition and abundance of Synechococcus assemblages in Hong Kong waters.  相似文献   

17.
Biosynthesis of glycine betaine from simple carbon sources as compatible solute is rare among aerobic heterotrophic eubacteria, and appears to be almost exclusive to the non-halophilic and slightly halophilic phototrophic cyanobacteria. Although Synechococcus sp. WH8102 (CCMP2370), a unicellular marine cyanobacterium, could grow up to additional 2.5% (w/v) NaCl in SN medium, natural abundance 13C nuclear magnetic resonance spectroscopy identified glycine betaine as its major compatible solute. Intracellular glycine betaine concentrations were dependent on the osmolarity of the growth medium over the range up to additional 2% NaCl in SN medium, increasing from 6.8 ± 1.5 to 62.3 ± 5.5 mg/g dw. The ORFs SYNW1914 and SYNW1913 from Synechococcus sp. WH8102 were found as the homologous genes coding for glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase, heterologously over-expressed respectively as soluble fraction in Escherichia coli BL21(DE3)pLysS and purified by Ni-NTA His•bind resins. Their substrate specificities and the values of the kinetic parameters were determined by TLC and 1H NMR spectroscopy. RT-PCR analysis revealed that the two ORFs were both transcribed in cells of Synechococcus sp. WH8102 growing in SN medium without additional NaCl, which confirmed the pathway of de novo synthesizing betaine from glycine existing in these marine cyanobacteria.  相似文献   

18.
19.
20.
In temperate coastal environments, wide fluctuations of biotic and abiotic factors drive microbiome dynamics. To link recurrent ecological patterns with planktonic microbial communities, we analysed a monthly-sampled 3-year time series of 16S rRNA amplicon sequencing data, alongside environmental variables, collected at two stations in the northern Adriatic Sea. Time series multivariate analyses allowed us to identify three stable, mature communities (climaxes), whose recurrence was mainly driven by changes in photoperiod and temperature. Mixotrophs (e.g., Ca. Nitrosopumilus, SUP05 clade, and Marine Group II) thrived under oligotrophic, low-light conditions, whereas copiotrophs (e.g., NS4 and NS5 clades) bloomed at higher temperatures and substrate availability. The early spring climax was characterised by a more diverse set of amplicon sequence variants, including copiotrophs associated with phytoplankton-derived organic matter degradation, and photo-auto/heterotrophic organisms (e.g., Synechococcus sp., Roseobacter clade), whose rhythmicity was linked to photoperiod lengthening. Through the identification of recurrent climax assemblages, we begin to delineate a typology of ecosystem based on microbiome composition and functionality, allowing for the intercomparison of microbial assemblages among different biomes, a still underachieved goal in the omics era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号