首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By integrating next‐generation sequencing (NGS), bioinformatics, electron microscopy and conventional molecular biology tools, a new virus infecting kiwifruit vines has been identified and characterized. Being associated with double‐membrane‐bound bodies in infected tissues and having a genome composed of RNA segments, each one containing a single open reading frame in negative polarity, this virus shows the typical features of members of the genus Emaravirus. Five genomic RNA segments were identified. Additional molecular signatures in the viral RNAs and in the proteins they encode, together with data from phylogenetic analyses, support the proposal of creating a new species in the genus Emaravirus to classify the novel virus, which is tentatively named Actinidia chlorotic ringspot‐associated virus (AcCRaV). Bioassays showed that AcCRaV is mechanically transmissible to Nicotiana benthamiana plants which, in turn, may develop chlorotic spots and ringspots. Field surveys disclosed the presence of AcCRaV in four different species of kiwifruit vines in five different provinces of central and western China, and support the association of the novel virus with symptoms of leaf chlorotic ringspots in Actinidia. Data on the molecular features of small RNAs of 21–24 nucleotides, derived from AcCRaV RNAs targeted by host RNA silencing mechanisms, are also reported, and possible molecular pathways involved in their biogenesis are discussed.  相似文献   

2.
Novel negative-stranded RNA (nsRNA) viruses have been recently identified in multiple agronomic crops, including pome fruit trees. Citrus concave gum-associated virus (CCGaV), citrus virus A (CiVA) and apple rubbery wood viruses 1 and 2 (ARWV1 and 2) are examples of such viruses. Given the novelty and lack of information about these pathogens in Californian orchards, in this study, real-time RT-PCR assays for CCGaV, CiVA, ARWV1 and 2 were developed and employed in a field survey. Initially, the new assays were challenged against a comprehensive set of positive and negative samples, previously analysed by high-throughput sequencing (HTS), to determine specificity. Aiming to investigate the presence of nsRNA viruses in California apple and pear orchards, 186 samples were collected from 21 different locations. As a result, 79 (42%) samples were found to be infected by these viruses in single or mixed infections. The incidence of each virus in relation to the total number of samples was 36%, 15%, 11% and 0% for ARWV2, CCGaV, ARWV1 and CiVA respectively. Overall, not considering the no detected CiVA, the other three nsRNA viruses were widely distributed among sampled orchards. To further validate the reliability of the new real-time RT-PCR assays, six samples tested positive during the survey were screened by previously described detection assays and HTS. This is the first detection of these nsRNA viruses in California, which may represent an issue in apple and pear production.  相似文献   

3.
4.
Tobacco bushy top disease is caused by a complex of the viruses tobacco bushy top virus (TBTV, a member of the genus Umbravirus) and tobacco vein distorting virus (TVDV, a member of the genus Polerovirus), which acts as a helper virus encapsidating the TBTV genomic RNA. RNA from purified virions is separated as five bands. The two largest (6.0 and 4.2 kb) were shown by Northern blot analysis to be the genomic RNAs of TVDV and TBTV, respectively. A band of about 3 kb was cloned and sequenced and shown to be the RNA of a previously undescribed virus with two open reading frames (ORFs), the second of which is an RNA‐dependent RNA polymerase (RdRp) and is probably expressed by readthrough of the ORF1a stop codon. BLAST and phylogenetic analyses of the RdRp show that it is related to two RNAs previously reported in association with the poleroviruses Beet western yellows virus and Carrot red leaf virus. These three RNAs appear to represent species of a new genus of plant viruses dependent upon a helper polerovirus for their transmission.  相似文献   

5.
The class 1 ribonuclease III (RNase III) encoded by Sweet potato chlorotic stunt virus (CSR3) suppresses RNA silencing in plant cells and thereby counters the host antiviral response by cleaving host small interfering RNAs, which are indispensable components of the plant RNA interference (RNAi) pathway. The synergy between sweet potato chlorotic stunt virus and sweet potato feathery mottle virus can reduce crop yields by 90%. Inhibitors of CSR3 might prove efficacious to counter this viral threat, yet no screen has been carried out to identify such inhibitors. Here, we report a novel high-throughput screening (HTS) assay based on fluorescence resonance energy transfer (FRET) for identifying inhibitors of CSR3. For monitoring CSR3 activity via HTS, we used a small interfering RNA substrate that was labelled with a FRET-compatible dye. The optimized HTS assay yielded 109 potential inhibitors of CSR3 out of 6,620 compounds tested from different small-molecule libraries. The three best inhibitor candidates were validated with a dose–response assay. In addition, a parallel screen of the selected candidates was carried out for a similar class 1 RNase III enzyme from Escherichia coli (EcR3), and this screen yielded a different set of inhibitors. Thus, our results show that the CSR3 and EcR3 enzymes were inhibited by distinct types of molecules, indicating that this HTS assay could be widely applied in drug discovery of class 1 RNase III enzymes.  相似文献   

6.
7.
8.
Zoonotic diseases considerably impact public health and socioeconomics. RNA viruses reportedly caused approximately 94% of zoonotic diseases documented from 1990 to 2010, emphasizing the importance of investigating RNA viruses in animals. Furthermore, it has been estimated that hundreds of thousands of animal viruses capable of infecting humans are yet to be discovered, warning against the inadequacy of our understanding of viral diversity. High-throughput sequencing (HTS) has enabled the identification of viral infections with relatively little bias. Viral searches using both symptomatic and asymptomatic animal samples by HTS have revealed hidden viral infections. This review introduces the history of viral searches using HTS, current analytical limitations, and future potentials. We primarily summarize recent research on large-scale investigations on viral infections reusing HTS data from public databases. Furthermore, considering the accumulation of uncultivated viruses, we discuss current studies and challenges for connecting viral sequences to their phenotypes using various approaches: performing data analysis, developing predictive modeling, or implementing high-throughput platforms of virological experiments. We believe that this article provides a future direction in large-scale investigations of potential zoonotic viruses using the HTS technology.  相似文献   

9.
灰飞虱是一种重要农业害虫,作为病毒介体,可以传播多种植物病毒引起水稻、小麦和玉米等粮食作物病毒病害。目前对于灰飞虱体内昆虫病毒种类尚缺乏系统认识,难以开展利用昆虫病毒防治灰飞虱相关研究工作。为挖掘灰飞虱体内昆虫病毒资源,本文通过小RNA深度测序技术对灰飞虱所携带的病毒种类进行分析鉴定。结果显示,测序数据比对得到13种病毒,涉及8个病毒科和2种未分类病毒。除占据优势的水稻条纹病毒外,其余均为专性寄生的昆虫病毒,包括5种正链RNA病毒、2种单链DNA病毒和5种双链DNA病毒。在这些病毒中,发现了一种与果蝇A病毒较相似的新病毒,克隆出其依赖RNA的RNA聚合酶(RdRP)基因1-1 932位核酸序列,经Blast比对和系统进化分析,在氨基酸序列中发现RdRP掌型亚结构域保守区呈现复制酶置换四体病毒科(Permutotetraviridae)病毒所具有的“C-A-B”排列样式,确定该病毒是一种新的类复制酶置换四体病毒,暂命名为Laodelphax striatellus permutotetra-like virus(LsPLV)。这是首次在半翅目昆虫中发现类复制酶置换四体病毒。本研究表明灰飞...  相似文献   

10.
Maize lethal necrosis disease (MLND) is a devastating viral disease of maize caused by double infection with Maize chlorotic mottle virus (MCMV) and any one of the Potyviridae family members. Management of MLND requires effective resistance screening and surveillance tools. In this study, we report the use of small RNA (sRNA) profiling to detect MLND causal viruses and further the development of alternative detection markers for use in routine surveillance of the disease-causing viruses. Small RNAs (sRNAs) originating from five viruses namely MCMV, Sugarcane mosaic virus (SCMV), Maize streak virus (MSV), Maize-associated totivirus (MATV) and Maize yellow mosaic virus (MYMV) were assembled from infected maize samples collected from MLND hot spots in Kenya. The expression of the identified viral domains was further validated using quantitative real-time PCR. New markers for the detection of some of the MLND causal viruses were also developed from the highly expressed domains and used to detect the MLND-causative viruses in maize and alternative hosts. These findings further demonstrate the potential of using sRNAs especially from highly expressed viral motifs in the detection of MLND causal viruses. We report the validation of new sets of primers for use in detection of the most common MLND causal viruses MCMV and SCMV in East Africa.  相似文献   

11.
RNA silencing is an important mechanism of antiviral defence in plants. To counteract this resistance mechanism, many viruses have evolved RNA silencing suppressors. In this study, we analysed five proteins encoded by Sweet potato chlorotic fleck virus (SPCFV) for their abilities to suppress RNA silencing using a green fluorescent protein (GFP)‐based transient expression assay in Nicotiana benthamiana line 16c plants. Our results showed that a putative nucleotide‐binding protein (NaBp), but not other proteins encoded by the virus, could efficiently suppress local and systemic RNA silencing induced by either sense or double‐stranded RNA (dsRNA) molecules. Deletion mutation analysis of NaBp demonstrated that the basic motif (an arginine‐rich region) was critical for its RNA silencing suppression activity. Using confocal laser scanning microscopy imaging of transfected protoplasts expressing NaBp fused to GFP, we showed that NaBp accumulated predominantly in the nucleus. Mutational analysis of NaBp demonstrated that the basic motif represented part of the nuclear localization signal. In addition, we demonstrated that the basic motif in NaBp was a pathogenicity determinant in the Potato virus X (PVX) heterogeneous system. Overall, our results demonstrate that the basic motif of SPCFV NaBp plays a critical role in RNA silencing suppression, nuclear localization and viral pathogenesis.  相似文献   

12.
Identification and distribution of viruses infecting sweet potato in Kenya   总被引:2,自引:0,他引:2  
Four hundred and forty-eight symptomatic and 638 asymptomatic samples were collected from sweet potato fields throughout Kenya and analysed serologically using antibodies to Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato mild mottle virus (SPMMV), Cucumber mosaic virus (CMV), Sweet potato chlorotic fleck virus (SPCFV), Sweet potato latent virus (SwPLV), Sweet potato caulimo-like virus (SPCaLV), Sweet potato mild speckling virus (SPMSV) and C-6 virus in enzyme-linked immunosorbent assays (ELISA). Only SPFMV, SPMMV, SPCSV, and SPCFV were detected. Ninety-two percent and 25% of the symptomatic and asymptomatic plants respectively tested positive for at least one of these viruses. Virus-infected plants were collected from 89% of the fields. SPFMV was the most common and the most widespread, detected in 74% of the symptomatic plants and 86% of fields surveyed. SPCSV was also very common, being detected in 38% of the symptomatic plants and in 50% of the fields surveyed. SPMMV and SPCFV were detected in only 11% and 3% of the symptomatic plant samples respectively. Eight different combinations of these four viruses were found in individual plants. The combination SPFMV and SPCSV was the most common, observed in 22% of symptomatic plants. Virus combinations were rare in the asymptomatic plants tested. Incidence of virus infection was highest (18%) in Kisii district of Nyanza province and lowest (1%) in Kilifi and Malindi districts of Coast province.  相似文献   

13.
An isometric virus c. 30 nm in diameter with a single RNA species (mol.wt 1.45 × 106) isolated from cucumber plants from the island of Crete (Greece) is described under the name of cucumber fruit streak virus (CFSV). The most evident symptom on naturally infected plants consisted of longitudinal chlorotic streak of the fruits. In glasshouse, the virus was soil-transmitted to C. sativus, and, mechanically, to a wide range of herbaceous hosts, most of which were infected only locally. Purified virus preparations sedimented as a single component with sedimentation coefficient of 132S. At equilibrium these preparations were homogeneous in CsCl gradients but formed two bands in Cs2SO4 gradients. Virus particles were stabilized by forces involving divalent cations, pH-dependent bonds and salt links between protein and RNA. Although some of the properties of CFSV are similar to those of other small spherical viruses with single RNA species there are differences which do not allow for the assignment of the virus to any of established taxonomic group of plant viruses.  相似文献   

14.
A new RNA of about 900 nt was found in the virions of cocksfoot mottle virus (CfMV) and in infected plants by RNA hybridization and RT-PCR. Structural features suggested that this RNA is a defective interfering RNA (diRNA). The CfMV diRNA was shown to consist of a 35-nt 5′-terminal genomic region, which formed a hairpin, and a 3′-terminal genomic region, which included the coat protein (CP) gene lacking the first 120 nt.In vitro translation of the diRNA started at the third Met codon to produce truncated CP. The CfMV diRNA was assumed totrans-activate synthesis of the CP subgenomic RNA (sgRNA).  相似文献   

15.
A novel negative‐stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum‐associated virus, is flexuous and non‐enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod‐transmitted viruses infecting mammals, and with a group of still unclassified phlebo‐like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA‐dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo‐like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate‐restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans‐kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed.  相似文献   

16.
17.
Small interfering RNA deep sequencing (SRDS) was used to detect viruses in 23 sweetpotato plants, collected from various locations in Tanzania. Alignment of small RNA reads using a MAQ program recovered genomes of viruses from five families, namely Geminiviridae (2), Closteroviridae (1), Betaflexiviridae (1), Caulimoviridae (1) and Potyviridae (1). This was in agreement with the variation of symptoms observed on sweetpotato plants in fields and screen house, which included leaf curl, vein yellowing, chlorosis, stunted growth and brown blotches. PCR was also used to confirm the occurrence of viruses associated with leaf curl and symptomless infections. A complete genome (2768 nucleotides) was obtained for a sweepovirus that was 89.9% identical to the strain of Sweet potato leaf curl Sao Paulo virus (SPLCSPV; Begomovirus) reported in South Africa. Sweepoviruses are known to undergo frequent recombinations and evidence for this was found in the SPLCSPV sequence studied. The SRDS‐based results indicated occurrence of the poorly studied Sweet potato badnavirus B (SPBV‐B) and Sweet potato badnavirus A (collectively known as Sweet potato pakakuy virus; SPPV; Caulimoviridae) in sweetpotato plants in Tanzania. A 5′‐end partial sequence (3065 nucleotides), encoding hypothetical, movement and coat proteins, was obtained and found to be 86.3% and 73.1% identical to SPBV‐B and SPBV‐A, respectively. A survey for the distribution of SPPV and Sweet potato symptomless mastrevirus 1 (SPSMV‐1) showed that these viruses were wide spread and co‐infecting sweetpotato plants in Tanzania. The importance of East Africa as a hot spot for the diversity and evolution of sweet potato viruses is discussed.  相似文献   

18.
昆虫可以利用小干扰RNA(siRNA)机制干扰体内RNA病毒的增殖,从而获得对该病毒的免疫能力。通过第二代测序技术对蚊子的小RNA进行高通量测序,再通过生物信息学方法寻找其中的RNA病毒序列,发现在我国云南地区的白纹伊蚊和致倦库蚊体内存在Marayo,Omsk hemorrhagic fever和Ilheus等RNA病毒的基因片段。至此建立了发现媒介昆虫体内携带病毒的一种新方法,可用于媒介昆虫携带RNA病毒的本底调查。  相似文献   

19.
A bizarre virus‐like symptom of a leaf rosette formed by dense small leaves on branches of wild roses (Rosa multiflora Thunb.), designated as ‘wild rose leaf rosette disease’ (WRLRD), was observed in China. To investigate the presumed causal virus, a wild rose sample affected by WRLRD was subjected to deep sequencing of small interfering RNAs (siRNAs) for a complete survey of the infecting viruses and viroids. The assembly of siRNAs led to the reconstruction of the complete genomes of three known viruses, namely Apple stem grooving virus (ASGV), Blackberry chlorotic ringspot virus (BCRV) and Prunus necrotic ringspot virus (PNRSV), and of a novel virus provisionally named ‘rose leaf rosette‐associated virus’ (RLRaV). Phylogenetic analysis clearly placed RLRaV alongside members of the genus Closterovirus, family Closteroviridae. Genome organization of RLRaV RNA (17 653 nucleotides) showed 13 open reading frames (ORFs), except ORF1 and the quintuple gene block, most of which showed no significant similarities with known viral proteins, but, instead, had detectable identities to fungal or bacterial proteins. Additional novel molecular features indicated that RLRaV seems to be the most complex virus among the known genus members. To our knowledge, this is the first report of WRLRD and its associated closterovirus, as well as two ilarviruses and one capilovirus, infecting wild roses. Our findings present novel information about the closterovirus and the aetiology of this rose disease which should facilitate its control. More importantly, the novel features of RLRaV help to clarify the molecular and evolutionary features of the closterovirus.  相似文献   

20.
Groundnut plants with symptoms of rosette disease contain groundnut rosette virus (GRV), but GRV is transmitted by Aphis craccivora only from plants that also contain groundnut rosette assistor virus (GRAV). Two main forms of rosette disease are recognised, ‘chlorotic rosette’ and ‘green rosette’. GRV cultures invariably possess a satellite RNA and this is the major cause of rosette symptoms: satellite-free isolates derived from GRV cultures from Nigerian plants with chlorotic or green rosette, or from Malawian plants with chlorotic rosette, induced no symptoms, or only transient mild mottle or interveinal yellowing, in groundnut. When the satellite RNA species from GRV cultures from Nigerian green or Malawian chlorotic rosette were reintroduced into the three satellite-free isolates in homologous and heterologous combinations, the ability to induce rosette symptoms was restored and the type of rosette induced was that of the cultures from which the satellite RNA was derived. Thus different forms of the satellite are responsible for the different forms of rosette disease. Other forms of the satellite induce only mild chlorosis or mottle symptoms in groundnut. Individual plants may contain more than one form of the satellite, and variations in their relative predominance are suggested to account for the variable symptoms (ranging from overall yellowing to mosaic) seen in some plants graft-inoculated with chlorotic rosette.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号