首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface water Selenium (Se) concentrations are above regulatory standards at several active and inactive phosphate mine sites in the US Western Phosphate Resource Area. The focus of the present study was to examine the impacts of the microbial communities on the oxidation state of Se in overburden waste from the Smoky Canyon phosphate mine in Idaho, USA. Microbial populations were found that reduce soluble selenate (SeO42−) to insoluble elemental Se. Microcosm experiments were conducted for molecular genetic analysis of this microbial community by rRNA gene profiling. An acetone pretreatment step was developed to remove interfering pre-petroleum hydrocarbons from the samples prior to extraction. PCR was used to amplify 16S and 18S rRNA genes present in the microbial community DNA. The amplified products were subjected to denaturing gradient gel electrophoresis (DGGE). Isolates and excised DGGE bands were amplified and sequenced for identification to determine the relative importance of culturable isolates to the total microbial population. Analysis of samples from different sites at the mine showed how Se contamination and previous remediation treatments changed the microbial populations across the site. Members of the family Enterobacteriaceae were dominant among the selenate reducing isolates from the site containing high Se levels. In particular, Serratia fonticola was isolated repeatedly from contaminated Smoky Canyon Mine site samples. Packed column studies were performed with seleniferous waste rock fractions from Smoky Canyon Mine. Column amendments consisted of combinations of iron, compost, and whey. Eh, pH, and extractable Se measurements were taken. Tests with infiltrated water showed columns containing an organic amendment combined with iron metal were the most resistant to Se leaching. Iron-based compounds from the corroding metal are thought to strongly bind the Se reduced by microbial activity, thereby stabilizing the Se in an insoluble form. We conclude that long-term stabilization of selenium at contaminated mine sites may require reductive microbial processes combined with abiotic immobilization by iron, either natural or engineered, to stabilize the Se and retard re-oxidation and release. Iron-selenide or iron-selenite compounds are more stable and resistant to leaching, especially when removed from active weathering.  相似文献   

2.
尾矿区不同植被恢复模式下高效固氮菌的筛选及Biolog鉴定   总被引:1,自引:0,他引:1  
李雯  阎爱华  黄秋娴  李玉灵  赵顺 《生态学报》2014,34(9):2329-2337
为了从铁尾矿中获得高效土著固氮菌,采用选择性无氮培养基从不同恢复模式下铁尾矿土样中筛选高效固氮菌,并且通过乙炔还原法对分离出的48株固氮菌进行固氮酶活性测定。结果表明:筛选出两株具有较高固氮活性菌株Db1与Ec1,Biolog鉴定为固氮菌属(Azotobacter),固氮比活力分别为203.20 nmol·mg-1·h-1和307.23 nmol·mg-1·h-1。不同植被恢复模式、物种多样性、尾矿坡向、工程措施、恢复年限均对尾矿固氮菌株数量有影响。样地处于尾矿阳坡,或属于人造混交林,或植被恢复年限长,又或者实施六孔砖、坡岩造地等工程措施的尾矿植被恢复模式下筛得的固氮菌菌株数较多或固氮活力较高。  相似文献   

3.
Lab‐scale experiments were conducted to investigate the effects of ferrous iron on nutrient removal performance and variations in the microbial community inside aerobic granular sludge for 408 days. Two reactors were simultaneously operated, one without added ferrous iron (SBR1), and one with 10 mg Fe2+ L?1 of added ferrous iron (SBR2). A total of 1 mg Fe2+ L?1 of added ferrous iron was applied to SBR1 starting from the 191st day to observe the resulting variations in the nutrient removal performance and the microbial community. The results show that ammonia‐oxidizing bacteria (AOB) could not oxidize ammonia due to a lack of iron compounds, but they could survive in the aerobic granular sludge. Limited ferrous iron addition encouraged nitrification. Enhanced biological phosphorus removal (EBPR) from both reactors could not be maintained regardless of the amount of ferrous iron that was applied. EBPR was established in both reactors when the concentration of mixed liquor suspended solid (MLSS) and the percentage of Accumulibacteria increased. A total of 10 mg Fe2+ L?1 of added ferrous iron had a relatively adverse effect on the growth of AOB species compared to 1 mg Fe2+ L?1 of added ferrous iron, but it encouraged the growth of Nitrospira sp. and Accumulibacteria, which requires further study. It could be said that the compact and stable structure of aerobic granular sludge preserved AOB and NOB from Fe‐deficient conditions, and wash‐out during the disintegration period. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:716–725, 2017  相似文献   

4.
Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypothesis was that cyanobacteria produced oxygen which oxidized iron abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron‐oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to banded iron formations (BIFs) and other ferruginous deposits. However, there is currently little evidence for planktonic marine iron oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron‐oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic–anoxic transition zone (<3 μm O2, <0.2 μm H2S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Cyanobacteria may be providing oxygen for microaerophilic iron oxidation through a symbiotic relationship; at high Fe(II) levels, cyanobacteria would gain protection against Fe(II) toxicity. A Zetaproteobacteria isolate from this site oxidized iron at rates sufficient to account for deposition of geologic iron formations. In sum, our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron oxidizers were likely important drivers of iron mineralization in ancient oceans.  相似文献   

5.
生物冶金是利用微生物铁硫元素代谢活性加速硫化矿物氧化溶解,并对其中有价金属加以提取回收的技术。冶金系统中微生物的代谢多样性及其耦合功能网络,尤其是以铁硫代谢途径为主的功能网络,在硫化矿物加速氧化溶解过程中承担了重要作用,是生物冶金技术理论研究的核心领域。本文归纳了冶金系统中多样化的微生物物种及其铁硫代谢途径,并从微生物代谢耦合角度探讨了微生物代谢多样性与矿物的相互作用。  相似文献   

6.
Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2–8.6) and an average hydrogen concentration of 0.75% (range of 0.3–1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of iron metal may therefore be an effective technology for remediation of PCB-contaminated sediments.  相似文献   

7.
Understanding the cycling of C and N in soils is important for maintaining soil fertility while also decreasing greenhouse gas emissions, but much remains unknown about how organic matter (OM) is stabilized in soils. We used nano‐scale secondary ion mass spectrometry (NanoSIMS) to investigate the changes in C and N in a Vertisol and an Alfisol incubated for 365 days with 13C and 15N pulse labeled lucerne (Medicago sativa L.) to discriminate new inputs of OM from the existing soil OM. We found that almost all OM within the free stable microaggregates of the soil was associated with mineral particles, emphasizing the importance of organo‐mineral interactions for the stabilization of C. Of particular importance, it was also found that 15N‐rich microbial products originating from decomposition often sorbed directly to mineral surfaces not previously associated with OM. Thus, we have shown that N‐rich microbial products preferentially attach to distinct areas of mineral surfaces compared to C‐dominated moieties, demonstrating the ability of soils to store additional OM in newly formed organo‐mineral associations on previously OM‐free mineral surfaces. Furthermore, differences in 15N enrichment were observed between the Vertisol and Alfisol presumably due to differences in mineralogy (smectite‐dominated compared to kaolinite‐dominated), demonstrating the importance of mineralogy in regulating the sorption of microbial products. Overall, our findings have important implications for the fundamental understanding of OM cycling in soils, including the immobilization and storage of N‐rich compounds derived from microbial decomposition and subsequent N mineralization to sustain plant growth.  相似文献   

8.
An extremely acidic (pH 2.5-2.75) metal-rich stream draining an abandoned mine in the Iberian Pyrite Belt, Spain, was ramified with stratified macroscopic gelatinous microbial growths ('acid streamers' or 'mats'). Microbial communities of streamer/mat growths sampled at different depths, as well as those present in the stream water itself, were analysed using a combined biomolecular and cultivation-based approach. The oxygen-depleted mine water was dominated by the chemolithotrophic facultative anaerobe Acidithiobacillus ferrooxidans, while the streamer communities were found to be highly heterogeneous and very different to superficially similar growths reported in other extremely acidic environments. Microalgae accounted for a significant proportion of surface streamer biomass, while subsurface layers were dominated by heterotrophic acidophilic bacteria (Acidobacteriacae and Acidiphilium spp.). Sulfidogenic bacteria were isolated from the lowest depth streamer growths, where there was also evidence for selective biomineralization of copper sulfide. Archaeal clones (exclusively Euryarchaeota) were recovered from streamer samples, as well as the mine stream water. Both sunlight and reduced inorganic chemicals (predominantly ferrous iron) served as energy sources for primary producers in this ecosystem, promoting complex microbial interactions involving transfer of electron donors and acceptors and of organic carbon, between microorganisms in the stream water and the gelatinous streamer growths. Microbial transformations were shown to impact the biogeochemical cycling of iron and sulfur in the acidic stream, severely restricting the net oxidation of ferrous iron even when the initially anoxic waters were oxygenated by indigenous acidophilic algae. A model accounting for the biogeochemistry of iron and sulfur in the mine waters is described, and the significance of the acidophilic communities in regulating the geochemistry of acidic, metal-rich waters is described.  相似文献   

9.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

10.
Ferritin, which includes twenty-four light and heavy chains in varying proportions in different tissues, is primarily responsible for maintaining the body's iron metabolism. Its normal value is between 10 and 200 ngmL?1 in men and between 30 and 300 ngmL?1 in women. Iron is delivered to the tissue via them, and they act as immunomodulators, signaling molecules, and inflammatory markers. When ferritin level exceeds 1000 µgL-1, the patient is categorized as having hyperferritinemia. Iron chelators such as deferiprone, deferirox, and deferoxamine are currently FDA approved to treat iron overload. The inflammation cascade and poor prognosis of COVID-19 may be attributed to high ferritin levels. Critically ill patients can benefit from deferasirox, an iron chelator administered orally at 20–40 mgkg?1 once daily, as well as intravenous deferoxamine at 1000 mg initially followed by 500 mg every 4 to 12 h. It can be combined with monoclonal antibodies, antioxidants, corticosteroids, and lactoferrin to make iron chelation therapy effective for COVID-19 victims. In this article, we analyze the antiviral and antifibrotic activity of iron chelators, thereby promoting iron depletion therapy as a potentially innovative treatment strategy for COVID-19.  相似文献   

11.
Abstract The effects of the earthworm Pontoscolex corethrurus (Muller) on the rate of mineralization of cattle dung‐amended iron (Fe2 + ) ore mine wastes and its preference for partially decomposed leaf litter with contrasting chemical composition were studied in pot trials. The growth and survival rates of earthworms showed significant positive correlations with percent of organic matter. During 96 days of exposure, the earthworms significantly increased exchangeable Ca2 + , Mg2 + , PO43 ? and NH4‐N. Iron ore mine wastes amended with 5–10% organic matter supported earthworm fauna better than mine wastes amended with 0–3% organic matter. The leaf litter preference shown by the earthworm was, in descending order, Phyllanthus reticulatus, Tamarindus indica, Anacardium occidentale, Casuarina equisetifolia, Acacia auriculiformis, and Eucalyptus camaldulensis. A significant positive correlation was observed between the survival and growth rates of earthworms and the nutrient contents of partially decomposed leaf litter. The first three plant species were significantly richer in nutrients, mainly organic carbon, calcium, phosphorus, and nitrogen, than the other two plant species. Acacia auriculiformis and E. camaldulensis litter were preferred less because of their high lignin and polyphenolic compounds, despite being rich in other macronutrients like nitrogen and phosphorus. It is concluded that the introduction of P. corethrurus to cattle dung‐amended (5–10%) iron ore mine wastes or revegetation of the sites with P. reticulatus, T. indica, and A. occidentale plant species should be attempted before earthworm introduction. The litter from these species acts as a source of food for earthworms, thereby hastening the process of restoration of abandoned iron ore mines of Goa, India.  相似文献   

12.
Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.  相似文献   

13.
Salt marshes near urban, industrial and mining areas are often affected both by heavy metals and by eutrophic water. The aim of this study was to assess and evaluate the main processes involved in the decrease of nitrate concentration in pore water of mine wastes flooded with eutrophic water, considering the presence or absence of plant rhizhosphere. Basic (pH ∼ 7.8) carbonated loam mine wastes and free-carbonated acidic (pH ∼ 6.2) sandy-loam mine wastes were collected from polluted coastal salt marshes of SE Spain which regularly receive nutrient-enriched water. The wastes were put in pots and flooded for 15 weeks with eutrophic water (dissolved organic carbon ∼26 mg L−1, PO43− ∼23 mg L−1, NO3 ∼180 mg L−1). Three treatments were assayed for each type of waste: pots with Sarcocornia fruticosa, pots with Phragmites australis and unvegetated pots. Soluble organic carbon, nitrate, soluble Cd, Pb and Zn, pH and Eh were monitored. But the 2nd day of flooding, nitrate concentrations had decreased between 70% and 90% (equivalent to 1.01-1.12 g N-NO3 m−2 day−1) with respect to the content in the water used for flooding, except in unvegetated pots with acidic wastes. Denitrification was the main mechanism associated with the removal of nitrate. The role of vegetation in improving the rhizospheric environment was relevant in the acidic wastes because higher sand content, lower pH and higher soluble metal concentrations might strongly hinder microbial activity Hence, revegetation of salt marshes polluted by acidic sandy mining wastes might improve the capacity of this type of environment to act as a green filter against excessive nitrate contents flowing through them.  相似文献   

14.
It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.Subject terms: Biogeochemistry, Marine microbiology  相似文献   

15.
This study presents population analyses of microbial communities inhabiting a site of extreme acid mine drainage (AMD) production. The site is the inactive underground Richmond mine at Iron Mountain, Calif., where the weathering of a massive sulfide ore body (mostly pyrite) produces solutions with pHs of ~0.5 to ~1.0. Here we used a suite of oligonucleotide probes, designed from molecular data recently acquired from the site, to analyze a number of microbial environments by fluorescent in situ hybridization. Microbial-community analyses were correlated with geochemical and mineralogical data from those environments. The environments investigated were within the ore body and thus at the site of pyrite dissolution, as opposed to environments that occur downstream of the dissolution. Few organism types, as defined by the specificities of the oligonucleotide probes, dominated the microbial communities. The majority of the dominant organisms detected were newly discovered or organisms only recently associated with acid-leaching environments. “Ferroplasma” spp. were detected in many of the communities and were particularly dominant in environments of lowest pH and highest ionic strength. Leptospirillum spp. were also detected in many slime and pyrite-dominated environments. In samples of an unusual subaerial slime, a new uncultured Leptospirillum sp. dominated. Sulfobacillus spp. were detected as a prominent inhabitant in warmer (~43°C) environments. The information gathered here is critical for determining organisms important to AMD production at Iron Mountain and for directing future studies of this process. The findings presented here also have relevance to the microbiology of industrial bioleaching and to the understanding of geochemical iron and sulfur cycles.  相似文献   

16.
The geochemical dynamics and composition of microbial communities within a low-temperature (≈ 8.5°C), long-abandoned (> 90 years) underground pyrite mine (Cae Coch, located in north Wales) were investigated. Surface water percolating through fractures in the residual pyrite ore body that forms the roof of the mine becomes extremely acidic and iron-enriched due to microbially accelerated oxidative dissolution of the sulfide mineral. Water droplets on the mine roof were found to host a very limited diversity of exclusively autotrophic microorganisms, dominated by the recently described psychrotolerant iron/sulfur-oxidizing acidophile Acidithiobacillus ferrivorans, and smaller numbers of iron-oxidizing Leptospirillum ferrooxidans. In contrast, flowing water within the mine chamber was colonized with vast macroscopic microbial growths, in the form of acid streamers and microbial stalactites, where the dominant microorganisms were Betaproteobacteria (autotrophic iron oxidizers such as 'Ferrovum myxofaciens' and a bacterium related to Gallionella ferruginea). An isolated pool within the mine showed some similarity (although greater biodiversity) to the roof droplets, and was the only site where archaea were relatively abundant. Bacteria not previously associated with extremely acidic, metal-rich environments (a Sphingomonas sp. and Ralstonia pickettii) were found within the abandoned mine. Data supported the hypothesis that the Cae Coch ecosystem is underpinned by acidophilic, mostly autotrophic, bacteria that use ferrous iron present in the pyrite ore body as their source of energy, with a limited role for sulfur-based autotrophy. Results of this study highlight the importance of novel bacterial species (At. ferrivorans and acidophilic iron-oxidizing Betaproteobacteria) in mediating mineral oxidation and redox transformations of iron in acidic, low-temperature environments.  相似文献   

17.
A bacterium isolated from microbial mats located on a polynesian atoll produced a high molecular weight (3,000 kDa) and highly sulphated exopolysaccharide. Previous studies showed that the chemical structure of this EPS consisted of neutral sugars, uronic acids, and high proportions of acetate and sulphate groups. The copper- and iron-binding ability of the purified pre-treated native EPS was investigated. Results showed that this EPS had a very high affinity for both copper (9.84 mmol g−1 EPS) and ferrous iron (6.9 mmol g−1 EPS). Amazingly, this EPS did not show any affinity for either ferric ions or selenium salts. This finding is one of the first steps in assessing the biotechnological potential of this polysaccharide.  相似文献   

18.
As a consequence of Earth's surface oxygenation, ocean geochemistry changed from ferruginous (iron(II)‐rich) into more complex ferro‐euxinic (iron(II)‐sulphide‐rich) conditions during the Paleoproterozoic. This transition must have had profound implications for the Proterozoic microbial community that existed within the ocean water and bottom sediment; in particular, iron‐oxidizing bacteria likely had to compete with emerging sulphur‐metabolizers. However, the nature of their coexistence and interaction remains speculative. Here, we present geochemical and microbiological data from the Arvadi Spring in the eastern Swiss Alps, a modern model habitat for ferro‐euxinic transition zones in late Archean and Proterozoic oceans during high‐oxygen intervals, which enables us to reconstruct the microbial community structure in respective settings for this geological era. The spring water is oxygen‐saturated but still contains relatively elevated concentrations of dissolved iron(II) (17.2 ± 2.8 μM) and sulphide (2.5 ± 0.2 μM) with simultaneously high concentrations of sulphate (8.3 ± 0.04 mM). Solids consisting of quartz, calcite, dolomite and iron(III) oxyhydroxide minerals as well as sulphur‐containing particles, presumably elemental S0, cover the spring sediment. Cultivation‐based most probable number counts revealed microaerophilic iron(II)‐oxidizers and sulphide‐oxidizers to represent the largest fraction of iron‐ and sulphur‐metabolizers in the spring, coexisting with less abundant iron(III)‐reducers, sulphate‐reducers and phototrophic and nitrate‐reducing iron(II)‐oxidizers. 16S rRNA gene 454 pyrosequencing showed sulphide‐oxidizing Thiothrix species to be the dominating genus, supporting the results from our cultivation‐based assessment. Collectively, our results suggest that anaerobic and microaerophilic iron‐ and sulphur‐metabolizers could have coexisted in oxygenated ferro‐sulphidic transition zones of late Archean and Proterozoic oceans, where they would have sustained continuous cycling of iron and sulphur compounds.  相似文献   

19.
Here, we present results from sediments collected in the Argentine Basin, a non‐steady state depositional marine system characterized by abundant oxidized iron within methane‐rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide‐depleted sediments is best explained by a microbially mediated process—implicating anaerobic oxidation of methane coupled to iron reduction (Fe‐AOM) as the most likely major mechanism. Although important in many modern marine environments, iron‐driven AOM may not consume similar amounts of methane compared with sulfate‐dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate‐lean marine settings. Fe‐AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.  相似文献   

20.
The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore‐scale phosphorite depositions formed almost at ~2.0–2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean–Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million‐year‐old Abitibi banded iron formation and the 2460 million‐year‐old Kuruman banded iron formation and their similarities to those in the 535 million‐year‐old Lower Cambrian phosphorite. The lithology of the 535 Million‐year‐old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub‐millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号