首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biologically induced systemic acquired resistance in Arabidopsis thaliana   总被引:3,自引:2,他引:1  
Local infection with a necrotizing pathogen can render plants resistant to subsequent infection by normally virulent pathogens. A system for biological induction of such systemic acquired resistance (SAR) in Arabidopsis thaliana is reported. When plants were immunized by local inoculation of a single leaf with avirulent Pseudomonas syringae pv. tomato (Pst) carrying the avrRpt2 avirulence gene, after 2 days other leaves became resistant, as measured symptomatically and by in planta bacterial growth, to challenge with a virulent Pst strain lacking this avirulence gene. Resistance was systemic and protected the plants against infection by other virulent pathogens including P. syringae pv. maculicola. Low-dose inoculation induced a strong SAR and double immunizations did not increase the level of protection indicating that the response of only a few cells to the immunizing bacteria is required. SAR was not induced by the virulent strain of Pst lacking avrRpt2. However, experiments with the Arabidopsis RPS2 disease resistance gene mutant rps2-201, which does not exhibit a local hypersensitive response to Pst carrying the corresponding avirulence gene avrRpt2, indicate that a hypersensitive response contributes to, but is not essential for, the induction of SAR. Thus, avrRpt2 activates either a branching signal pathway or separate parallel pathways for induction of localized hypersensitive resistance and SAR, with downstream potentiation of the systemic response by the local response. Using this system for the biological induction of SAR in Arabidopsis, it should be possible to dissect the molecular genetics of SAR by the isolation of mutants affected in the production, transmission, perception and transduction of the systemic signal(s).  相似文献   

2.
The plant growth‐promoting fungi (PGPF) have long been known to improve plant growth and suppress plant diseases. The PGPF Penicillium viridicatum GP15‐1 elicited plant growth and induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. Examination of local and systemic genes indicated that GP15‐1 did not modulate the expression of any of the tested defence‐related marker genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene signalling pathways. Subsequent challenge of GP15‐1‐colonized plants with Pst bacterium primed Arabidopsis plants for enhanced activation of the JA‐inducible Atvsp (vegetative storage protein) gene at a later stage of infection. To assess the contribution of different signalling pathways in GP15‐1‐elicited plant growth and ISR, Arabidopsis genotypes implicated in SA signalling expressing the nahG transgene (NahG) or carrying disruption in NPR1 (npr1), JA signalling (jar1) and ethylene signalling (ein2) were tested. The GP15‐1‐induced plant growth and ISR were fully compromised in an ein2 mutation. Root colonization assay revealed that the inability of the ein2 mutant to express GP15‐1‐induced plant growth and ISR was not associated with reduced root colonization by GP15‐1. In conclusion, our results demonstrate the ethylene signalling pathway is involved in plant growth promotion and ISR elicitation by the PGPF P. viridicatum GP15‐1 in Arabidopsis. These results provide evidence that ethylene signalling has a substantial role in plant growth and disease resistance.  相似文献   

3.
4.
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell‐wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)‐derived peptide and its receptors, HAESA (HAE) and HAESA‐LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell‐wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA‐like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss‐of‐function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6‐HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6‐HAE/HSL2‐ADPG2 signaling pathway.  相似文献   

5.
Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis   总被引:2,自引:1,他引:1  
MicroRNA398 targets two Cu/Zn superoxide dismutases (CSD1 and CSD2) in higher plants. Previous investigations revealed both decreased miR398 expression during high Cu2+ or paraquat stress and increased expression under low Cu2+ or high sucrose in the growth medium. Here, we show that additional abiotic stresses such as ozone and salinity also affect miR398 levels. Ozone fumigation decreased miR398 levels that were gradually restored to normal levels after relieved from the stress. Furthermore, miR398 levels decreased in Arabidopsis leaves infiltrated with avirulent strains of Pseudomonas syringae pv. tomato, Pst DC3000 (avrRpm1 or avrRpt2) but not the virulent strain Pst DC3000. To our knowledge, miR398 is the first miRNA shown to be down-regulated in response to biotic stress (P. syringae). CSD1, but not CSD2, mRNA levels were negatively correlated with miR398 levels during ozone, salinity and biotic stress, suggesting that CSD2 regulation is not strictly under miR398 control during diverse stresses. Overall, this study further establishes a link between oxidative stress and miR398 in Arabidopsis.  相似文献   

6.
Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defence in plants. However, their function in plant immunity is not fully understood. In this study, we show that the expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv. tomato (Pst) DC3000 infection, and that knockout of Fd2 (Fd2‐KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. On Pst DC3000 infection, the Fd2‐KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid‐related immune responses. Fd2‐KO also shows defects in the accumulation of reactive oxygen species induced by pathogen‐associated molecular pattern‐triggered immunity. However, Fd2‐KO shows enhanced R‐protein‐mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector‐triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin‐binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 plays an important role in plant immunity.  相似文献   

7.
8.
9.
10.
采用实时荧光定量RT-PCR和Northern blotting技术检测了野生型拟南芥中CBP60g基因对丁香假单胞菌和非生物胁迫的响应,并对丁香假单胞菌接种后,野生型拟南芥、cbp60g-1突变体和CBP60g过表达转基因植物中抗逆相关基因的表达变化进行检测。结果显示:(1)在野生型拟南芥中CBP60g基因的表达能被丁香假单胞菌、高盐、冷和机械损伤所诱导。(2)经丁香假单胞菌诱导后病程相关基因PR5和AIG1的表达在过表达转基因植物中明显高于野生型。(3)受干旱和ABA诱导的AtMYB2基因的表达在过表达转基因植物中也高于野生型。研究表明,CBP60g同时参与了拟南芥对生物和非生物胁迫响应。  相似文献   

11.
Programmed cell death (PCD) is a precise, genetically controlled cellular process with important roles in plant growth, development, and response to biotic and abiotic stress. However, the genetic mechanisms that control PCD in plants are unclear. Two Arabidopsis genes, DAL1 and DAL2 (for Drosophila DIAP1 like 1 and 2), encoding RING finger proteins with homology to DIAP1 were identified, and a series of experiments were performed to elucidate their roles in the regulation of PCD and disease resistance. Expression of DAL1 and DAL2 genes was induced in Arabidopsis plants after inoculation with virulent and avirulent strains of Pseudomonas syrinage pv. tomato (Pst) DC3000 or after infiltration with fumonisin B1 (FB1). Plants with mutations in the DAL1 and DAL2 genes displayed more severe disease after inoculation with an avirulent strain of Pst DC3000, but they showed similar disease severity as the wild-type plant after inoculation with a virulent strain of Pst DC3000. Significant accumulations of reactive oxygen species (ROS) and increased cell death were observed in the dal1 and dal2 mutant plants after inoculation with the avirulent strain of Pst DC3000. The dal mutant plants underwent extensive PCD upon infiltration of FB1 and displayed higher levels of ROS accumulation, callose deposition, and autofluorescence than the wild-type plants. Our data suggest that DAL1 and DAL2 may act as negative regulators of PCD in Arabidopsis.  相似文献   

12.
Nudix pyrophosphatases, ubiquitous in all organisms, have not been well studied. Recent implications that some of them may be involved in response to stress and in pathogenesis indicate that they play important biological functions. We have investigated NudC Nudix proteins from the plant pathogen Pseudomonas syringae pv. tomato str. DC3000 and from the human pathogen Pseudomonas aeruginosa PAO1161. We found that these homologous enzymes are homodimeric and in vitro preferentially hydrolyse NADH. The P. syringae mutant strain deficient in NudC accumulated NADH and displayed significant defects in growth, motility and biofilm formation. The wild type copy of the nudC gene with its cognate promoter delivered in trans into the nudC mutant restored its fitness. However, introduction of the P. syringae nudC gene under the control of the strong tacp promoter into either P. syringae or P. aeruginosa cells had a toxic effect on both strains. Opposite to P. syringae NudC, the P. aeruginosa NudC deficiency as well as its overproduction had no visible impact on cells. Moreover, P. aeruginosa NudC does not compensate the lack of its counterpart in the P. syringae mutant. These results indicate that NudC from P. syringae, but not from P. aeruginosa is vital for bacteria.  相似文献   

13.
14.
A bacteriocin produced by Pseudomonas syringae pv. ciccaronei, used at different purification levels and concentrations in culture and in planta, inhibited the multiplication of P. syringae subsp. savastanoi, the causal agent of olive knot disease, and affected the epiphytic survival of the pathogen on the leaves and twigs of treated olive plants. Treatments with bacteriocin from P. syringae pv. ciccaronei inhibited the formation of overgrowths on olive plants caused by P. syringae subsp. savastanoi strains PVBa229 and PVBa304 inoculated on V-shaped slits and on leaf scars at concentrations of 105 and 108 CFU ml−1, respectively. In particular, the application of 6,000 arbitrary units (AU) of crude bacteriocin (dialyzed ammonium sulfate precipitate of culture supernatant) ml−1 at the inoculated V-shaped slits and leaf scars resulted in the formation of knots with weight values reduced by 81 and 51%, respectively, compared to the control, depending on the strains and inoculation method used. Crude bacteriocin (6,000 AU ml−1) was also effective in controlling the multiplication of epiphytic populations of the pathogen. In particular, the bacterial populations recovered after 30 days were at least 350 and 20 times lower than the control populations on twigs and on leaves, respectively. These results suggest that bacteriocin from P. syringae pv. ciccaronei can be used effectively to control the survival of the causal agent of olive knot disease and to prevent its multiplication at inoculation sites.  相似文献   

15.
RpoN is a σ54 factor regulating essential virulence gene expression in several plant pathogenic bacteria, including Pseudomonas syringae and Pectobacterium carotovorum. In this study, we found that mutation of rpoN in the fire blight pathogen Erwinia amylovora caused a nonpathogenic phenotype. The E. amylovora rpoN Tn5 transposon mutant rpoN1250::Tn5 did not cause fire blight disease symptoms on shoots of mature apple trees. In detached immature apple fruits, the rpoN1250::Tn5 mutant failed to cause fire blight disease symptoms and grew to population levels 12 orders of magnitude lower than the wild‐type. In addition, the rpoN1250::Tn5 mutant failed to elicit a hypersensitive response when infiltrated into nonhost tobacco plant leaves, and rpoN1250::Tn5 cells failed to express HrpN protein when grown in hrp (hypersensitive response and pathogenicity)‐inducing liquid medium. A plasmid‐borne copy of the wild‐type rpoN gene complemented all the rpoN1250::Tn5 mutant phenotypes tested. The rpoN1250::Tn5 mutant was prototrophic on minimal solid and liquid media, indicating that the rpoN1250::Tn5 nonpathogenic phenotype was not caused by a defect in basic metabolism or growth. This study provides clear genetic evidence that rpoN is an essential virulence gene of E. amylovora, suggesting that rpoN has the same function in E. amylovora as in P. syringae and Pe. carotovorum.  相似文献   

16.
Plant immunity must be tightly controlled to avoid activation of defense mechanisms in the absence of pathogen attack. Protein phosphorylation is a common mechanism regulating immune signaling. In Arabidopsis thaliana, nine members of the type one protein phosphatase (TOPP) family (also known as protein phosphatase 1, PP1) have been identified. Here, we characterized the autoimmune phenotype of topp4‐1, a previously identified dominant‐negative mutant of TOPP4. Epistasis analysis showed that defense activation in topp4‐1 depended on NON‐RACE‐SPECIFIC DISEASE RESISTANCE1, PHYTOALEXIN DEFICIENT4, and the salicylic acid pathway. We generated topp1/4/5/6/7/8/9 septuple mutants to investigate the function of TOPPs in plant immunity. Elevated defense gene expression and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 in the septuple mutant indicate that TOPPs function in plant defense responses. Furthermore, TOPPs physically interacted with mitogen‐activated protein kinases (MAPKs) and affected the MAPK‐mediated downstream defense pathway. Thus, our study reveals that TOPPs are important regulators of plant immunity.  相似文献   

17.
The tomato (Solanum lycopersicum L.) is one of the world’s most important vegetable crops. Still, phytopathogenic bacteria affect the yield and quality of tomato cultivation, like Agrobacterium tumefeciens (At), Clavibacter michiganensis subsp. michiganensis (Cmm), Pseudomonas syringae pv. tomato (Pst), Ralstonia solanacearum (Rs), and Xanthomonas axonopodis (Xa). Synthetic chemical products are used mostly on disease plant control, but overuse generates resistance to bacterial control. This study aimed to evaluate the in vitro antibacterial activity of the ethanolic extract of Moringa oleifera Lam. leaves against At, Cmm, Pst, Rs, and Xa, as well as information about this plant species’ chemical composition. Antibacterial activity against pathogens observed by microplate technique, phytochemical screening, and FTIR analysis revealed different bio-active compounds on ethanolic extracts with antibacterial activity. The growth inhibition rate ranged between 0.08% and 99.94%. The inhibitory concentration, IC50, required to inhibit 50% of At, Cmm, Pst, Rs, and Xa bacterial growth, was 276.67, 350.48, 277.85, 351.49, and 283.22 mg/L, respectively. Inhibition of phytopathogen bacteria’s growth increased as the concentrations of the extract also increased. Moringa oleifera extract can be recommended as a potent bio-bactericide.  相似文献   

18.
Summary Some plant pathogens produce toxins which cause disease in infected plants. One of the pathogenic toxins, tabtoxin, is produced by Pseudomonas syringae pv. tabaci, which causes wildfire of tobacco. A tabtoxin resistance gene (ttr) coding for an acetyltransferase isolated from Pseudomonas syringae pv. tabaci was fused to the 35S promoter of the cauliflower mosaic virus (CaMV) to construct a chimeric gene for introduction into tobacco cells by Agrobacterium-mediated transformation. The transgenic tobacco plants showed high specific-expression of the ttr gene and no chlorotic symptoms caused by tabtoxin treatment or with infection by Pseudomonas syringae pv. tabaci. These results demonstrate a successful approach to obtain disease-resistant plants by detoxification of the pathogenic toxins which play an important role in pathogenesis.  相似文献   

19.
P. syringae pv. syringae strain R32 causes the bacterial brown spot disease on bush beans. A 31 kD protein was detected which is involved in the pathogenic response. Monospecific antibodies directed against this 31 kD-protein were used to screen a protein expression gene bank made from the wild type strain R32. A 0.8 kb DNA insert of a clone which gave a positive reaction with the monospecific antibodies was used in hybrizations to clone a larger chromosomal fragment. A km-cassette (kmresistance) was integrated into this chromosomal DNA-fragment preventing the expression of the 31 kD-protein. This construct was integrated into the chromosomal of the wild type strain R32 viahomologous recombination resulting in the 31 kD-protein deficient mutant LMI. Biotests with the host plant (bean) and with tobacco leaves showed no symptoms or hypersensitive reaction (HR) when the mutant LMI was inoculated. However, atypical chlorotic and necrotic lesions compared to the wild type strain R32 were found on tobacco leaves when the mutant LMI was incubated for more than 2 weeks. Complementation of the LMI mutant with a plasmid harbouring the corresponding wild type R32 DNA fragment resulted in an isolate (LMIC) which showed a partial restoration of the HR on tobacco but no brown spot disease symptoms on bush beans. The 31 kD-protein could be detected serologically in LMIC.  相似文献   

20.
Chromobacterium sp. strain C61 has strong biocontrol activity; however, the genetic and biochemical determinants of its plant disease suppression activity are not well understood. Here, we report the identification and characterization of two new determinants of its biocontrol activity. Transposon mutagenesis was used to identify mutants that were deficient in fungal suppression. One of these mutants had an insertion in a homologue of depD, a structural gene in the dep operon, that encodes a protein involved in non‐ribosomal peptide synthesis. In the second mutant, the insertion was in a homologue of the luxI gene, which encodes a homoserine lactone synthase. The luxI and depD mutants had no antifungal activity in vitro and a dramatically reduced capacity to suppress various plant diseases in planta. Antifungal production and biocontrol were restored by complementation of the luxI mutant. Other phenotypes associated with effective biological control, including motility and lytic enzyme secretion, were also affected by the luxI mutation. Biochemical analysis of ethyl acetate extracts of culture filtrates of the mutant and wild‐type strains showed that a key antifungal compound, chromobactomycin, was produced by wild‐type C61 and the complemented luxI mutant, but not by the luxI or depD mutant. These data suggest that multiple biocontrol‐related phenotypes are regulated by homoserine lactones in C61. Thus, quorum sensing plays an essential role in the biological control potential of diverse bacterial lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号