首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(2):474-482
Severe forms of dengue virus (DENV) infection frequently cause high case fatality rate. Currently, there is no effective vaccine against the infection. Clinical cases are given only palliative treatment as specific anti-DENV immunotherapy is not available and it is urgently required. In this study, human single-chain variable fragment (HuScFv) antibodies that bound specifically to the conserved non-structural protein-1 (NS1) of DENV and interfered with the virus replication cycle were produced by using phage display technology. Recombinant NS1 (rNS1) of DENV serotype 2 (DENV2) was used as antigen in phage bio-panning to select phage clones that displayed HuScFv from antibody phage display library. HuScFv from two phagemid transformed E. coli clones, i.e., clones 11 and 13, bound to the rNS1 as well as native NS1 in both secreted and intracellular forms. Culture fluids of the HuScFv11/HuScFv13 exposed DENV2 infected cells had significant reduction of the infectious viral particles, implying that the antibody fragments affected the virus morphogenesis or release. HuScFv epitope mapping by phage mimotope searching revealed that HuScFv11 bound to amino acids 1–14 of NS1, while the HuScFv13 bound to conformational epitope at the C-terminal portion of the NS1. Although the functions of the epitopes and the molecular mechanism of the HuScFv11 and HuScFv13 require further investigations, these small antibodies have high potential for development as anti-DENV biomolecules.  相似文献   

2.
3.
Severe forms of dengue virus (DENV) infection frequently cause high case fatality rate. Currently, there is no effective vaccine against the infection. Clinical cases are given only palliative treatment as specific anti-DENV immunotherapy is not available and it is urgently required. In this study, human single-chain variable fragment (HuScFv) antibodies that bound specifically to the conserved non-structural protein-1 (NS1) of DENV and interfered with the virus replication cycle were produced by using phage display technology. Recombinant NS1 (rNS1) of DENV serotype 2 (DENV2) was used as antigen in phage bio-panning to select phage clones that displayed HuScFv from antibody phage display library. HuScFv from two phagemid transformed E. coli clones, i.e., clones 11 and 13, bound to the rNS1 as well as native NS1 in both secreted and intracellular forms. Culture fluids of the HuScFv11/HuScFv13 exposed DENV2 infected cells had significant reduction of the infectious viral particles, implying that the antibody fragments affected the virus morphogenesis or release. HuScFv epitope mapping by phage mimotope searching revealed that HuScFv11 bound to amino acids 1–14 of NS1, while the HuScFv13 bound to conformational epitope at the C-terminal portion of the NS1. Although the functions of the epitopes and the molecular mechanism of the HuScFv11 and HuScFv13 require further investigations, these small antibodies have high potential for development as anti-DENV biomolecules.  相似文献   

4.
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design.  相似文献   

5.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   

6.
Different strains within a dengue serotype (DENV1-4) can have smooth, or “bumpy” surface morphologies with different antigenic characteristics at average body temperature (37°C). We determined the neutralizing properties of a serotype cross-reactive human monoclonal antibody (HMAb) 1C19 for strains with differing morphologies within the DENV1 and DENV2 serotypes. We mapped the 1C19 epitope to E protein domain II by hydrogen deuterium exchange mass spectrometry, cryoEM and molecular dynamics simulations, revealing that this epitope is likely partially hidden on the virus surface. We showed the antibody has high affinity for binding to recombinant DENV1 E proteins compared to those of DENV2, consistent with its strong neutralizing activities for all DENV1 strains tested regardless of their morphologies. This finding suggests that the antibody could out-compete E-to-E interaction for binding to its epitope. In contrast, for DENV2, HMAb 1C19 can only neutralize when the epitope becomes exposed on the bumpy-surfaced particle. Although HMAb 1C19 is not a suitable therapeutic candidate, this study with HMAb 1C19 shows the importance of choosing a high-affinity antibody that could neutralize diverse dengue virus morphologies for therapeutic purposes.  相似文献   

7.
Biological markers are normally used to evaluate the candidate of live-attenuated dengue vaccines. D3V 16562 Vero 23 and D3V 16562 Vero 33 which were derivatives of D3V 16562, parental strain, showed the similar biological data. We used molecular techniques and computational tools to evaluate these derivatives. The nucleotide and amino acid sequences of the derivatives were compared to their parent. The secondary structures of untranslated regions and B-cell epitopes were predicted. The results showed that nucleotide substitutions mostly occurred in NS5 and NS5 of V2 was unusual because of amino acid change at 3349 (tryptophan →stop codon). The nucleotide substitutions in 5''UTR, prM, E, NS1, NS2A, NS3, and 3''UTR were 4, 1, 2, 2, 1, 3, and 2, respectively. The secondary structure of 5''UTR of V2 was different from P and V1. The secondary structure of 3''UTR of V2 was similar to P and certainly distinct from V1. Furthermore, B-cell epitopes prediction revealed that there were 21 epitopes of envelope and the interesting epitope was at position 297-309 because it was in domain III in which the neutralizing antibody is induced. For this study, the attenuation of derivatives was caused by the nucleotide substitutions in 5''UTR, 3''UTR, and NS5 regions. The genotypic data and B-cell epitope make the derivatives attractive for the chimeric and peptide DENV vaccine development.  相似文献   

8.
Dengue fever is the most important vector‐borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Secondary infection by a different serotype is a risk factor for severe dengue. Monoclonal antibody mAb4E11 neutralizes the four serotypes of DENV with varying efficacies by recognizing an epitope located within domain‐III (ED3) of the viral envelope (E) protein. To better understand the cross‐reactivities between mAb4E11 and the four serotypes of DENV, we constructed mutations in both Fab4E11 fragment and ED3, and we searched for indirect interactions in the crystal structures of the four complexes. According to the serotype, 7 to 12 interactions are mediated by one water molecule, 1 to 10 by two water molecules, and several of these interactions are conserved between serotypes. Most interfacial water molecules make hydrogen bonds with both antibody and antigen. Some residues or atomic groups are engaged in both direct and water‐mediated interactions. The doubly‐indirect interactions are more numerous in the complex of lowest affinity. The third complementarity determining region of the light chain (L‐CDR3) of mAb4E11 does not contact ED3. The structures and double‐mutant thermodynamic cycles showed that the effects of (hyper)‐mutations in L‐CDR3 on affinity were caused by conformational changes and indirect interactions with ED3 through other CDRs. Exchanges of residues between ED3 serotypes showed that their effects on affinity were context dependent. Thus, conformational changes, structural context, and indirect interactions should be included when studying cross‐reactivity between antibodies and different serotypes of viral antigens for a better design of diagnostics, vaccine, and therapeutic tools against DENV and other Flaviviruses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Dengue fever of tropics is a mosquito transmitted devastating disease caused by dengue virus (DENV). There is no effective vaccine available, so far, against any of its four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). There is a need for the development of preventive and therapeutic vaccines against DENV to decrease the prevalence of dengue fever, especially in Pakistan. In this research, linear and conformational B-cell epitopes of envelope glycoprotein of DENV-2 and DENV-3 (the most prevalent serotypes in Pakistan) were predicted. We used Kolaskar and Tongaonkar method for linear epitope prediction, Emini’s method for surface accessibility prediction and Karplus and Schulz’s algorithm for flexibility determination. To propose three dimensional epitopes, the E proteins for both serotypes were homology modeled by using Phyre2 V 2.0 server, and ElliPro was used for the prediction of surface epitopes on their globular structure. Total 21 and 19 linear epitopes were predicted for DENV-2 and DENV-3 Pakistani isolates respectively. Whereas, 5 and 4 discontinuous epitopes were proposed for DENV-2 and DENV-3 Pakistani isolates respectively. Moreover, the values of surface accessibility, flexibility and solvent-accessibility can be helpful in analyzing vaccines against DENV-2 and DENV-3. In conclusion, the proposed continuous and discontinuous antigenic peptides can be valuable candidates for diagnostic and therapeutics of DENV.  相似文献   

10.
Dengue has become endemic in Pakistan with annual recurrence. A sudden increase in the dengue cases was reported from Rawalpindi in 2016, while an outbreak occurred for the first time in Peshawar in 2017. Therefore, a multi-center study was carried out to determine the circulating dengue virus (DENV) serotypes and Chikungunya virus (CHIKV) co-infection in Lahore, Rawalpindi, and Peshawar cities in 2016–18. A hospital-based cross-sectional study was carried out in Lahore and Rawalpindi in 2016–18, while a community-based study was carried out in Peshawar in 2017. The study participants were tested for dengue NS1 antigen using an immunochromatographic device while anti-dengue IgM/IgG antibodies were detected by indirect ELISA. All NS1 positive samples were used for DENV serotyping using multiplex real-time PCR assay. Additionally, dengue samples were tested for CHIKV co-infection using IgM/IgG ELISA. A total of 6291 samples were collected among which 8.11% were NS1 positive while 2.5% were PCR positive. DENV-2 was the most common serotype (75.5%) detected, followed by DENV-1 in 16.1%, DENV-3 in 3.9% and DENV-4 in 0.7% while DENV-1 and DENV-4 concurrent infections were detected in 3.9% samples. DENV-1 was the predominant serotype (62.5%) detected from Lahore and Rawalpindi, while DENV-2 was the only serotype detected from Peshawar. Comorbidities resulted in a significant increase (p-value<0.001) in the duration of hospital stay of the patients. Type 2 diabetes mellitus substantially (p-value = 0.004) contributed to the severity of the disease. Among a total of 590 dengue positive samples, 11.8% were also positive for CHIKV co-infection. Co-circulation of multiple DENV serotypes and CHIKV infection in Pakistan is a worrisome situation demanding the urgent attention of the public health experts to strengthen vector surveillance.  相似文献   

11.
Laboratory diagnosis of dengue virus (DENV) infection including DENV serotyping requires skilled labor and well-equipped settings. DENV NS1 lateral flow rapid test (LFT) provides simplicity but lacks ability to identify serotype. A simple, economical, point-of-care device for serotyping is still needed. We present a gravity driven, smartphone compatible, microfluidic device using microcapillary film (MCF) to perform multiplex serotype-specific immunoassay detection of dengue virus NS1. A novel device–termed Cygnus–with a stackable design allows analysis of 1 to 12 samples in parallel in 40 minutes. A sandwich enzyme immunoassay was developed to specifically detect NS1 of all four DENV serotypes in one 60-μl plasma sample. This test aims to bridge the gap between rapid LFT and laboratory microplate ELISAs in terms of sensitivity, usability, accessibility and speed. The Cygnus NS1 assay was evaluated with retrospective undiluted plasma samples from 205 DENV infected patients alongside 50 febrile illness negative controls. Against the gold standard RT-PCR, clinical sensitivity for Cygnus was 82% in overall (with 78, 78, 80 and 76% for DENV1-4, respectively), comparable to an in-house serotyping NS1 microplate ELISA (82% vs 83%) but superior to commercial NS1-LFT (82% vs 74%). Specificity of the Cygnus device was 86%, lower than that of NS1-microplate ELISA and NS1-LFT (100% and 98%, respectively). For Cygnus positive samples, identification of DENV serotypes DENV2-4 matched those by RT-PCR by 100%, but for DENV1 capillaries false positives were seen, suggesting an improved DENV1 capture antibody is needed to increase specificity. Overall performance of Cygnus showed substantial agreement to NS1-microplate ELISA (κ = 0.68, 95%CI 0.58–0.77) and NS1-LFT (κ = 0.71, 95%CI 0.63–0.80). Although further refinement for DENV-1 NS1 detection is needed, the advantages of multiplexing and rapid processing time, this Cygnus device could deliver point-of-care NS1 antigen testing including serotyping for timely DENV diagnosis for epidemic surveillance and outbreak prediction.  相似文献   

12.
Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization.  相似文献   

13.
Dengue virus (DENV), a mosquito-borne virus, is responsible for millions of cases of infections worldwide. There are four DENV serotypes (DENV1 to -4). After a primary DENV infection, the antibodies elicited confer lifetime protection against that DENV serotype. However, in a secondary infection with another serotype, the preexisting antibodies may cause antibody-dependent enhancement (ADE) of infection of macrophage cells, leading to the development of the more severe form of disease, dengue hemorrhagic fever. Thus, a safe vaccine should stimulate protection against all dengue serotypes simultaneously. To facilitate the development of a vaccine, good knowledge of different DENV serotype structures is crucial. Structures of DENV1 and DENV2 had been solved previously. Here we present a near-atomic resolution cryo-electron microscopy (cryo-EM) structure of mature DENV4. Comparison of the DENV4 structure with similar-resolution cryo-EM structures of DENV1 and DENV2 showed differences in surface charge distribution, which may explain their differences in binding to cellular receptors, such as heparin. Also, observed variations in amino acid residues involved in interactions between envelope and membrane proteins on the virus surface correlate with their ability to undergo structural changes at higher temperatures.  相似文献   

14.
Dengue viruses (DENVs) are emerging, mosquito-borne flaviviruses which cause dengue fever and dengue hemorrhagic fever. The DENV complex consists of 4 serotypes designated DENV1-DENV4. Following natural infection with DENV, individuals develop serotype specific, neutralizing antibody responses. Monoclonal antibodies (MAbs) have been used to map neutralizing epitopes on dengue and other flaviviruses. Most serotype-specific, neutralizing MAbs bind to the lateral ridge of domain III of E protein (EDIII). It has been widely assumed that the EDIII lateral ridge epitope is conserved within each DENV serotype and a good target for vaccines. Using phylogenetic methods, we compared the amino acid sequence of 175 E proteins representing the different genotypes of DENV3 and identified a panel of surface exposed amino acids, including residues in EDIII, that are highly variant across the four DENV3 genotypes. The variable amino acids include six residues at the lateral ridge of EDIII. We used a panel of DENV3 mouse MAbs to assess the functional significance of naturally occurring amino acid variation. From the panel of antibodies, we identified three neutralizing MAbs that bound to EDIII of DENV3. Recombinant proteins and naturally occurring variant viruses were used to map the binding sites of the three MAbs. The three MAbs bound to overlapping but distinct epitopes on EDIII. Our empirical studies clearly demonstrate that the antibody binding and neutralization capacity of two MAbs was strongly influenced by naturally occurring mutations in DENV3. Our data demonstrate that the lateral ridge “type specific” epitope is not conserved between strains of DENV3. This variability should be considered when designing and evaluating DENV vaccines, especially those targeting EDIII.  相似文献   

15.
Dengue virus(DENV) has four distinct serotypes. DENV infection can result in classic dengue fever and life-threatening dengue hemorrhagic fever/dengue shock syndrome. In recent decades, DENV infection has become an important public health concern in epidemic-prone areas. Vaccination is the most effective measure to prevent and control viral infections. However, several challenges impede the development of effective DENV vaccines, such as the lack of suitable animal models and the antibody-dependent enhancement phenomenon. Although no licensed DENV vaccine is available, significant progress has been made. This review summarizes candidate DENV vaccines from recent investigations.  相似文献   

16.
17.
Reactivation of serotype cross-reactive CD8+ memory T lymphocytes is thought to contribute to the immunopathogenesis of dengue disease during secondary infection by a heterologous serotype. Using cytokine flow cytometry, we have defined four novel HLA-A*02-restricted dengue viral epitopes recognized by up to 1.5% of circulating CD8+ T cells in four donors after primary vaccination. All four donors had the highest cytokine response to the epitope NS4b 2353. We also studied the effect of sequence differences in heterologous dengue serotypes on dengue-reactive CD8+ memory T cell cytokine and proliferative responses. The D3 variant of a different NS4b epitope 2423 and the D2 variant of the NS4a epitope 2148 induced the largest cytokine response, compared with their respective heterologous sequences in all donors regardless of the primary vaccination serotype. Stimulation with variant peptides also altered the relative frequencies of the various subsets of cells that expressed IFN-gamma, TNF-alpha, MIP-1beta, and combinations of these cytokines. These results indicate that the prior infection history of the individual as well as the serotypes of the primary and heterologous secondary viruses influence the nature of the secondary response. These differences in the effector functions of serotype cross-reactive memory T cells induced by heterologous variant epitopes, which are both quantitative and qualitative, may contribute to the clinical outcome of secondary dengue infection.  相似文献   

18.
The four dengue virus serotypes (DENV1-4) infect several hundred million people each year living in tropical and sub-tropical regions. Clinical development of DENV vaccines is difficult because immunity to a single serotype increases risk of severe disease during a second infection with a new serotype. Leading vaccines are based on tetravalent formulations to induce simultaneous and balanced protective immunity to all 4 serotypes. TAK-003 is a tetravalent live attenuated dengue vaccine candidate developed by Takeda Vaccines Inc, which is currently being evaluated in phase 3 efficacy trials. Here, we use antibody depletion methods and chimeric, epitope transplant DENVs to characterize the specificity of neutralizing antibodies in dengue-naïve adults and non-human primates immunized with TAK-003. Our results demonstrate that TAK-003 induced high levels of DENV2 neutralizing antibodies that recognized unique (type-specific) epitopes on DENV2. In contrast, most vaccinated subjects developed lower levels of DENV1, DENV3 and DENV4 neutralizing antibodies that mainly targeted epitopes that were conserved (cross-reactive) between serotypes.Trial Registration: ClinicalTrials.gov NCT02425098.  相似文献   

19.
Vaccine development against dengue virus is challenging because of the antibody-dependent enhancement of infection (ADE), which causes severe disease. Consecutive infections by Zika (ZIKV) and/or dengue viruses (DENV), or vaccination can predispose to ADE. Current vaccines and vaccine candidates contain the complete envelope viral protein, with epitopes that can raise antibodies causing ADE. We used the envelope dimer epitope (EDE), which induces neutralizing antibodies that do not elicit ADE, to design a vaccine against both flaviviruses. However, EDE is a discontinuous quaternary epitope that cannot be isolated from the E protein without other epitopes. Utilizing phage display, we selected three peptides that mimic the EDE. Free mimotopes were disordered and did not elicit an immune response. After their display on adeno-associated virus (AAV) capsids (VLP), they recovered their structure and were recognized by an EDE-specific antibody. Characterization by cryo-EM and enzyme-linked immunosorbent assay confirmed the correct display of a mimotope on the surface of the AAV VLP and its recognition by the specific antibody. Immunization with the AAV VLP displaying one of the mimotopes induced antibodies that recognized ZIKV and DENV. This work provides the basis for developing a Zika and dengue virus vaccine candidate that will not induce ADE.  相似文献   

20.
While virus-like particles (VLPs) containing subgenomic replicons, which can transduce replicons into target cells efficiently for studying viral replication and vectors of gene therapy and vaccine, have been established for several flaviviruses, none has been reported for the four serotypes of dengue virus, the causal agent of the most important arboviral diseases in this century. In this study, we successfully established a cell line stably expressing the precursor membrane/envelope (PrM/E) proteins of dengue virus type 2 (DENV2), which can package a DENV2 replicon with deletion of PrM/E genes and produce single-round infectious VLPs. Moreover, it can package a similar replicon of different serotype, dengue virus type 4, and produce infectious chimeric VLPs. To our knowledge, this study reports for the first time replicon-containing VLPs of dengue virus. Moreover, this convenient system has potential as a valuable tool to study encapsidation of dengue virus and to develop novel chimeric VLPs containing dengue virus replicon as vaccine in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号