首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
During the past years, aspergilli less susceptible to antifungals have begun to emerge, and antifungal drug resistance may partially account for treatment failures. Resistance of Aspergillus fumigatus clinical isolates to itraconazole, voriconazole, and posaconazole has been reported with increasing frequency, although it is considered an uncommon phenomenon. Molecular biologists have begun to shed light on the mechanisms of A. fumigatus resistance to azoles. Several mechanisms of resistance have been described, such as point mutations of cyp51A and reduced concentrations of intracellular drug. The latter mechanism might be the result of either overexpression of efflux pumps or reduced drug penetration. The issue of cross-resistance between the newer triazoles is of concern and depends on cyp51 mutations. Fungal drug resistance is an issue because of the limited number of antifungal compounds. Patients receiving long-term azole treatment are at highest risk for developing multidrug-resistant A. fumigatus infections.  相似文献   

2.
Azole resistance is an emerging problem in Aspergillus which impacts the management of aspergillosis. Here in we report the emergence and clonal spread of resistance to triazoles in environmental Aspergillus fumigatus isolates in India. A total of 44 (7%) A. fumigatus isolates from 24 environmental samples were found to be triazole resistant. The isolation rate of resistant A. fumigatus was highest (33%) from soil of tea gardens followed by soil from flower pots of the hospital garden (20%), soil beneath cotton trees (20%), rice paddy fields (12.3%), air samples of hospital wards (7.6%) and from soil admixed with bird droppings (3.8%). These strains showed cross-resistance to voriconazole, posaconazole, itraconazole and to six triazole fungicides used extensively in agriculture. Our analyses identified that all triazole-resistant strains from India shared the same TR34/L98H mutation in the cyp51 gene. In contrast to the genetic uniformity of azole-resistant strains the azole-susceptible isolates from patients and environments in India were genetically very diverse. All nine loci were highly polymorphic in populations of azole-susceptible isolates from both clinical and environmental samples. Furthermore, all Indian environmental and clinical azole resistant isolates shared the same multilocus microsatellite genotype not found in any other analyzed samples, either from within India or from the Netherlands, France, Germany or China. Our population genetic analyses suggest that the Indian azole-resistant A. fumigatus genotype was likely an extremely adaptive recombinant progeny derived from a cross between an azole-resistant strain migrated from outside of India and a native azole-susceptible strain from within India, followed by mutation and then rapid dispersal through many parts of India. Our results are consistent with the hypothesis that exposure of A. fumigatus to azole fungicides in the environment causes cross-resistance to medical triazoles. The study emphasises the need of continued surveillance of resistance in environmental and clinical A. fumigatus strains.  相似文献   

3.
Azole resistance in Aspergillus fumigatus isolates is increasingly reported in different nosologic contexts with variable prevalence in different countries. Mutations in the target of triazoles are widely described in azole-resistant clinical isolates. The recovery of mutated/resistant isolates is described either in patients undergoing long-term azole treatment or after inhalation of environmentally acquired resistant isolates. Acquisition in patients during azole therapy highlights the capacity of this fungus to adapt to its environment, but it has a low impact in terms of public health, as interhuman transmission of A. fumigatus is uncommon. Environmentally acquired resistant isolates may propagate and affect populations at risk. The use of triazoles as first-line therapy or prophylaxis could lead to selection of resistant isolates in patients, because most isolates harbor azole cross-resistance. Although mold-active triazoles have provided major progress in the prophylaxis and treatment of Aspergillus infection, the increase of azole resistance could question their use in humans.  相似文献   

4.
Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines’ current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.  相似文献   

5.
We reported the emergence of resistance to medical triazoles of Aspergillus fumigatus isolates from patients with invasive aspergillosis. A dominant resistance mechanism was found, and we hypothesized that azole resistance might develop through azole exposure in the environment rather than in azole-treated patients. We investigated if A. fumigatus isolates resistant to medical triazoles are present in our environment by sampling the hospital indoor environment and soil from the outdoor environment. Antifungal susceptibility, resistance mechanisms, and genetic relatedness were compared with those of azole-resistant clinical isolates collected in a previous study. Itraconazole-resistant A. fumigatus (five isolates) was cultured from the indoor hospital environment as well as from soil obtained from flower beds in proximity to the hospital (six isolates) but never from natural soil. Additional samples of commercial compost, leaves, and seeds obtained from a garden center and a plant nursery were also positive (four isolates). Cross-resistance was observed for voriconazole, posaconazole, and the azole fungicides metconazole and tebuconazole. Molecular analysis showed the presence of the dominant resistance mechanism, which was identical to that found in clinical isolates, in 13 of 15 environmental isolates, and it showed that environmental and clinical isolates were genetically clustered apart from nonresistant isolates. Patients with azole-resistant aspergillosis might have been colonized with azole-resistant isolates from the environment.Invasive aspergillosis is a fungal disease caused by Aspergillus species that primarily affects immunocompromised patients, such as those treated for hematological malignancy. Patients may become infected by inhalation of ambient air that contains fungal spores. The Aspergillus conidia can penetrate into the alveoli and if not effectively removed, may germinate, proliferate, and cause invasive aspergillosis. Mortality and morbidity due to invasive aspergillosis remain a significant problem.Triazoles, such as itraconazole (ITZ), voriconazole, and posaconazole, are used increasingly in the management of patients with this disease. Although the risk of resistance due to the increased use of triazoles is considered low (11), we recently observed ITZ resistance rapidly emerging in clinical Aspergillus fumigatus isolates (19, 22, 24, 25). Azole resistance was observed in up to 6% of patients in our hospital and in up to 14.5% of isolates sent to our laboratory from other hospitals in The Netherlands, which were obtained from patients with aspergillus disease (19). Furthermore, azole resistance has been reported in other European countries (3, 13, 19). The ITZ-resistant isolates also showed significantly reduced susceptibility to the other mold-active medical triazoles voriconazole and posaconazole (19). A substitution of leucine for histidine at codon 98 (L98H), combined with a 34-bp tandem repeat (designated TR) in the promoter region of the cyp51A gene (TR/L98H), which is the target for antifungal azoles, was found in 94% of isolates (14, 19, 24).Azole resistance can develop through the exposure of the fungus to azole compounds, which may occur in azole-treated patients or through the use of azole compounds in the environment. The dominance of a single resistance mechanism is difficult to explain by resistance development in individual azole-treated patients, as one would expect multiple resistance mechanisms to develop. Also, spread by person-to-person transmission of any Aspergillus isolate is highly unlikely. As inhalation of airborne aspergillus spores is the common route of infection for aspergillus diseases, we hypothesized that the dominance of a single resistance mechanism in clinical ITZ-resistant isolates was more consistent with acquisition from a common environmental source (19). If azole-resistant A. fumigatus is present in our environment, patients could inhale resistant spores and subsequently develop azole-resistant disease. Indeed, azole-resistant aspergillosis was reported in azole-naïve patients, indicating that resistance does not exclusively develop during azole therapy (24).Favorable conditions for resistance development are exposure to azole compounds and the presence of reproducing fungus (1). A. fumigatus is abundantly present in our environment as saprophytic, reproducing fungi, most notably in soil and compost. Furthermore, azoles are commonly used for plant protection as well as material preservation. Therefore, it appears that resistance development in A. fumigatus is feasible in the environment, and isolates that develop resistance to fungicides might be cross-resistant to medical triazoles.We investigated if A. fumigatus isolates that are present in our environment are resistant to medical triazoles and if they are cross-resistant to azole fungicides. Furthermore, we characterized the isolates by microsatellite typing in order to determine if they were genetically related to clinical A. fumigatus isolates previously obtained from patients cared for in our University Medical Center.  相似文献   

6.
BackgroundAn allogeneic hematopoietic cell transplantation (allo-HCT) patient presented with chronic pulmonary aspergillosis associated to pulmonary graft versus host disease (GVHD) and was treated for a long time with several antifungal agents that were administered as prophylaxis, combination therapies, and maintenance treatment. The patient suffered from a breakthrough invasive pulmonary aspergillosis due to Aspergillus fumigatus after long-term antifungal therapy.Material and methodsSeveral isolates were analyzed. First isolates were susceptible in vitro to all azole agents. However, after prolonged treatment with itraconazole and voriconazole a multiple azole resistant A. fumigatus isolate was cultured from bronchoalveolar lavage (BAL) when the patient was suffering from an invasive infection, and cavitary lesions were observed.ResultsAnalysis of the resistant mechanisms operating in the last strain led us to report the first isolation in Spain of an azole resistant A. fumigatus strain harboring the L98H mutation in combination with the tandem repeat (TR) alteration in CYP51A gene (TR-L98H). Long-term azole therapy may increase the risk of resistance selecting strains exhibiting reduced susceptibility to these compounds. However, since the isolates were genetically different the suggestion that could be made is that the resistance was not induced during the prolonged azole therapy but the patient might simply have acquired this resistant isolate from the environment, selected by the therapy.ConclusionsThese findings suggest that in all long-term treatments with antifungal agents, especially with azoles, repeated sampling and regular susceptibility testing of strains isolated is necessary as resistant isolates could be selected.  相似文献   

7.
Aspergillus species can cause mycoses in human and animals. Previously, we demonstrated that A. fumigatus conidia from a human isolate inhibited apoptosis in human pneumocytes and bronchial epithelial cells. In the current study, we studied the effects of A. fumigatus conidia non-human origin and A. flavus, A. nidulans, A. niger and A. oryzae conidia on human cells apoptosis. Human pneumocytes or bronchial epithelial cells were simultaneously exposed to apoptotic inductors and aspergilli conidia. The cell cultures were analyzed by flow cytometry, immunoblotting, and examination of nuclear morphology. Similar to A. fumigatus conidia, A. flavus conidia inhibited cellular apoptosis while A. nidulans, A. niger and A. oryzae conidia did not affect apoptosis. We further studied the species specificity of conidia: there were no differences in the inhibition of apoptosis by A. fumigatus conidia from either human or bird isolates. In order to determine whether the inhibition of apoptosis by conidia is limited to certain strains, the effect on human cell apoptosis of different A. fumigatus human clinical isolates and A. fumigatus of environmental origin was evaluated. All A. fumigatus isolates inhibited apoptosis; an anti-apoptotic factor was released by conidia. For TNF-induced apoptosis, the anti-apoptotic effect of conidia of all isolates was found to be associated with a reduction of caspase-3 in human cells. The results suggest that suppression of apoptosis may play a role in reducing the efficacy of host defense mechanisms during infection with Aspergillus species. F. Féménia and D. Huet made an equal contribution to this work.  相似文献   

8.
Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.  相似文献   

9.
Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis, a usually fatal infection. The disease has risen in prominence in recent years due to the increasing numbers of severely immunocompromised patients becoming infected. The fungus is ubiquitous in the environment, producing large numbers of conidia that are dispersed in the air. Humans inhale numerous conidia everyday, but infections are not seen in healthy individuals. As inhalation of conidia is the main route of infection, considerable efforts are required to prevent infection in susceptible patients. This review summarises the current knowledge on airborne concentrations of A. fumigatus conidia, their background levels in outdoor air and seasonal distribution patterns. New and established methods of air sampling for airborne A. fumigatus conidia are discussed. Common environmental sources of the fungus are reviewed, including its presence in compost heaps. Finally, the lack of stringent guidelines on the monitoring and control of airborne A. fumigatus concentrations in hospitals is discussed.  相似文献   

10.
Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan™ qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4−log10 range with high linearity (R 2 > 0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.  相似文献   

11.
Azole-resistant environmental Aspergillus fumigatus presents a threat to public health but the extent of this threat in Southeast Asia is poorly described. We conducted environmental surveillance in the Mekong Delta region of Vietnam, collecting air and ground samples across key land-use types, and determined antifungal susceptibilities of Aspergillus section Fumigati (ASF) isolates and azole concentrations in soils. Of 119 ASF isolates, 55% were resistant (or non-wild type) to itraconazole, 65% to posaconazole and 50% to voriconazole. Azole resistance was more frequent in A. fumigatus sensu stricto isolates (95%) than other ASF species (32%). Resistant isolates and agricultural azole residues were overrepresented in samples from cultivated land. cyp51A gene sequence analysis showed 38/56 resistant A. fumigatus sensu stricto isolates carried known resistance mutations, with TR34/L98H most frequent (34/38).  相似文献   

12.
The second-generation triazoles, voriconazole and posaconazole, have found important roles in the management of invasive fungal infections in high-risk patients. Both agents are more active against Candida albicans and the non-albicans Candida species than the first-generation triazoles. They are active against Aspergillus species, including those species less susceptible to polyenes, and against a variety of non-Aspergillus molds. In contrast to posaconazole, voriconazole has no activity against the zygomycetes, and breakthrough infections have been observed. Both are well absorbed, but considerable intra- and interpatient pharmacokinetic variability has raised the question of therapeutic drug monitoring. Both inhibit hepatic cytochrome P450 isoenzymes, which are important in the metabolism of various drugs coadministered in the management of high-risk patients. Clinical trials have demonstrated the safety and efficacy of both agents for antifungal prophylaxis and treatment in invasive candidiasis, invasive aspergillosis, and in invasive fungal infections caused by a variety of non-Aspergillus molds. Posaconazole is the only triazole approved for use in the treatment of invasive zygomycosis. Voriconazole is the accepted standard first-line therapy for invasive aspergillosis.  相似文献   

13.
Widespread use of antifungal drugs in prophylactic and therapeutic settings is associated with breakthrough infections primarily due to Aspergillus and non-Aspergillus molds and non-albicans Candida. Reasons for breakthrough include worsening of initial infection, superinfection, and co-infection; subtherapeutic drug levels, emergence of antifungal resistance, and host factors may contribute to progression of the initial infection. Establishing an etiologic diagnosis is crucial because clinical and radiological features are nonspecific, and empirically chosen drug(s) may not provide appropriate antimicrobial coverage. Evidence-based data do not exist for the management of breakthrough infection. Current treatment strategies include switching therapy to a drug of another class, dose optimization, and combinations of drugs. Dosage adjustment of triazoles guided by serum concentrations may ensure optimal efficacy and avoidance of toxicity. A combination of an echinocandin plus a triazole or polyene appears to be synergistically effective against invasive aspergillosis. The treatment strategy needs to be individualized. For an optimal outcome, reversal of immunosuppression is essential.  相似文献   

14.
Purpureocillium lilacinum is a filamentous and hyaline fungus cosmopolitan, saprophytic, largely used in the biological control of plant-parasitic nematodes and insects, also considered an emerging and opportunistic human pathogen. The standard treatment for hyalohyphomycosis caused by P. lilacinum is not yet defined, since this fungus is resistant to different antifungals, in vitro and in vivo. The aim of this study was to evaluate and compare in vitro antifungal activity against environmental and clinical P. lilacinum isolates and our results demonstrated that these isolates can be resistant to newer generation triazoles, such as voriconazole, and to caspofungin, a drug of the echinocandin class. In summary, we highlight the importance of knowing the different susceptibility profiles of P. lilacinum isolates, and besides that, the emergence of uncommon human and animal opportunistic fungi, such P. lilacinum, especially during COVID-19, highlight the need for antifungal susceptibility testing of isolates since empirical therapy with different treatment schedules failed in great number of patients.  相似文献   

15.

Background

Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR34/L98H). We investigated if TR34/L98H could have developed through exposure to DMIs.

Methods and Findings

Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in the Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR34/L98H isolate in 1998. Through microsatellite genotyping of TR34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes.

Conclusions

Our findings support a fungicide-driven route of TR34/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles appear the underlying mechanism of cross resistance development. Our findings have major implications for the assessment of health risks associated with the use of triazole DMIs.  相似文献   

16.
Fungal infections are increasingly dangerous because of environmentally dispersed resistance to antifungal drugs. Azoles are commonly used antifungal drugs, but they are also used as fungicides in agriculture, which may enable enrichment of azole-resistant strains of the human pathogen Aspergillus fumigatus in the environment. Understanding of environmental dissemination and enrichment of genetic variation associated with azole resistance in A. fumigatus is required to suppress resistant strains. Here, we focused on eight strains of azole-resistant A. fumigatus isolated from a single tulip bulb for sale in Japan. This set includes strains with TR34/L98H/T289A/I364V/G448S and TR46/Y121F/T289A/S363P/I364V/G448S mutations in the cyp51A gene, which showed higher tolerance to several azoles than strains harbouring TR46/Y121F/T289A mutation. The strains were typed by microsatellite typing, single nucleotide polymorphism profiles, and mitochondrial and nuclear genome analyses. The strains grouped differently using each typing method, suggesting historical genetic recombination among the strains. Our data also revealed that some strains isolated from the tulip bulb showed tolerance to other classes of fungicides, such as QoI and carbendazim, followed by related amino acid alterations in the target proteins. Considering spatial–temporal factors, plant bulbs are an excellent environmental niche for fungal strains to encounter partners, and to obtain and spread resistance-associated mutations.  相似文献   

17.

Purpose of Review

The expanding utilization of limited available antifungal agents has led to a pressing need to implement interventions to ensure appropriate usage. The global emergence of resistant, difficult-to-treat invasive fungal infections among the most vulnerable patient populations is a call to action to develop a multifaceted antifungal stewardship approach.

Recent Findings

Candida species demonstrating multi-drug resistance, including highly resistant Candida auris, are emerging threats. Azole-resistant Aspergillus fumigatus, likely initially originating in the environment, likewise presents a treatment challenge. Routine empiric and prophylactic antifungal use, though effective, further complicates this issue, with the emergence of breakthrough mold infections. Early evidence supports success with antifungal stewardship programs.

Summary

Broad antifungal stewardship approaches that optimize antifungal drug usage, facilitate provider education, and monitor fungal epidemiology are crucial steps to preserve the antifungal armamentarium. Future development of novel diagnostic and treatment strategies will further facilitate management of invasive fungal infections.
  相似文献   

18.

Background

Resistance to triazoles was recently reported in Aspergillus fumigatus isolates cultured from patients with invasive aspergillosis. The prevalence of azole resistance in A. fumigatus is unknown. We investigated the prevalence and spread of azole resistance using our culture collection that contained A. fumigatus isolates collected between 1994 and 2007.

Methods and Findings

We investigated the prevalence of itraconazole (ITZ) resistance in 1,912 clinical A. fumigatus isolates collected from 1,219 patients in our University Medical Centre over a 14-y period. The spread of resistance was investigated by analyzing 147 A. fumigatus isolates from 101 patients, from 28 other medical centres in The Netherlands and 317 isolates from six other countries. The isolates were characterized using phenotypic and molecular methods. The electronic patient files were used to determine the underlying conditions of the patients and the presence of invasive aspergillosis. ITZ-resistant isolates were found in 32 of 1,219 patients. All cases were observed after 1999 with an annual prevalence of 1.7% to 6%. The ITZ-resistant isolates also showed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, and posaconazole. A substitution of leucine 98 for histidine in the cyp51A gene, together with two copies of a 34-bp sequence in tandem in the gene promoter (TR/L98H), was found to be the dominant resistance mechanism. Microsatellite analysis indicated that the ITZ-resistant isolates were genetically distinct but clustered. The ITZ-sensitive isolates were not more likely to be responsible for invasive aspergillosis than the ITZ-resistant isolates. ITZ resistance was found in isolates from 13 patients (12.8%) from nine other medical centres in The Netherlands, of which 69% harboured the TR/L98H substitution, and in six isolates originating from four other countries.

Conclusions

Azole resistance has emerged in A. fumigatus and might be more prevalent than currently acknowledged. The presence of a dominant resistance mechanism in clinical isolates suggests that isolates with this mechanism are spreading in our environment.  相似文献   

19.
The incidence of invasive fungal infections has dramatically increased for several decades. In order to discover novel antifungal agents with broad spectrum and anti-Aspergillus efficacy, a series of novel triazole derivatives containing 1,2,3-benzotriazin-4-one was designed and synthesized. Most of the compounds exhibited stronger in vitro antifungal activities against tested fungi than fluconazole. Moreover, 6m showed comparable antifungal activity against seven pathogenic strains as voriconazole and albaconazole, especially against Aspergillus fumigatus (MIC = 0.25 μg/ml), and displayed moderate antifungal activity against fluconazole-resistant strains of Candida albicans. A clear SAR study indicated that compounds with groups at the 7-position resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.  相似文献   

20.
GPI‐anchoring is a universal and critical post‐translational protein modification in eukaryotes. In fungi, many cell wall proteins are GPI‐anchored, and disruption of GPI‐anchored proteins impairs cell wall integrity. After being synthesized and attached to target proteins, GPI anchors undergo modification on lipid moieties. In spite of its importance for GPI‐anchored protein functions, our current knowledge of GPI lipid remodelling in pathogenic fungi is limited. In this study, we characterized the role of a putative GPI lipid remodelling protein, designated PerA, in the human pathogenic fungus Aspergillus fumigatus. PerA localizes to the endoplasmic reticulum and loss of PerA leads to striking defects in cell wall integrity. A perA null mutant has decreased conidia production, increased susceptibility to triazole antifungal drugs, and is avirulent in a murine model of invasive pulmonary aspergillosis. Interestingly, loss of PerA increases exposure of β‐glucan and chitin content on the hyphal cell surface, but diminished TNF production by bone marrow‐derived macrophages relative to wild type. Given the structural specificity of fungal GPI‐anchors, which is different from humans, understanding GPI lipid remodelling and PerA function in A. fumigatus is a promising research direction to uncover a new fungal specific antifungal drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号