共查询到20条相似文献,搜索用时 9 毫秒
1.
The growth of Pyrobaculum aerophilum on yeast extract and nitrate was stimulated by the addition of maltose. Extracts of maltose/yeast extract/nitrate-grown cells contained all enzyme activities of a modified Embden-Meyerhof (EM) pathway, including ATP-dependent glucokinase, phosphoglucose isomerase, ATP-dependent 6-phosphofructokinase, fructose-1,6-phosphate aldolase, triose-phosphate isomerase, GAPOR, phosphoglycerate mutase, enolase and pyruvate kinase. The activity of GAPOR was stimulated about fourfold by maltose, indicating a role in sugar degradation. GAPOR was purified 200-fold to homogeneity and characterized as a 67 kDa monomeric, extremely thermostable protein. The enzyme showed high specificity for glyceraldehyde-3-phosphate and did not use glyceraldehyde, acetaldehyde or formaldehyde as substrates. By matrix-assisted laser desorption/ionization-time of flight analysis of the purified enzyme, ORF PA1029 was identified as a coding gene, gapor, in the sequenced genome of Pyrobaculum aerophilum. The data indicate that the (micro)aerophilic Pyrobaculum aerophilum contains a functional GAPOR as part of a modified EM pathway. Cells of the strictly aerobic crenarchaeon Aeropyrum pernix also contain enzyme activities of a modified EM pathway similar to that of Pyrobaculum aerophilum, except that a GAPN activity replaces GAPOR activity. 相似文献
2.
AMP-forming acetyl-CoA synthetases (ACSs) are ubiquitous in all three domains of life. Here, we report the first characterization of an ACS from a hyperthermophilic organism, from the archaeon Pyrobaculum aerophilum. The recombinant ACS, the gene product of ORF PAE2867, showed extremely high thermostability and thermoactivity at temperatures around 100 degrees C. In contrast to known monomeric or homodimeric mesophilic ACSs, the P. aerophilum ACS was a 610 kDa homooctameric protein, with a significant lower content of thermolabile (Cys, Asn, and Gln) and higher content of charged (Glu, Lys, and Arg) amino acids. Kinetic analyses revealed an unusual broad substrate spectrum for organic acids and an extremely high affinity for acetate (K(m) 3 microM). 相似文献
3.
Unique coenzyme binding mode of hyperthermophilic archaeal sn‐glycerol‐1‐phosphate dehydrogenase from Pyrobaculum calidifontis 下载免费PDF全文
Junji Hayashi Kaori Yamamoto Kazunari Yoneda Toshihisa Ohshima Haruhiko Sakuraba 《Proteins》2016,84(12):1786-1796
A gene encoding an sn‐glycerol‐1‐phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2’ of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild‐type enzyme with NADPH, which suggests that the biased interactions around the C2’‐phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)‐dependent dehydrogenases. Proteins 2016; 84:1786–1796. © 2016 Wiley Periodicals, Inc. 相似文献
4.
A novel, facultatively aerobic, heterotrophic hyperthermophilic archaeon was isolated from a terrestrial hot spring in the Philippines. Cells of the new isolate, strain VA1, were rod-shaped with a length of 1.5 to 10 microm and a width of 0.5 to 1.0 microm. Isolate VA1 grew optimally at 90 to 95 degrees C and pH 7.0 in atmospheric air. Oxygen served as a final electron acceptor under aerobic growth conditions, and vigorous shaking of the medium significantly enhanced growth. Elemental sulfur inhibited cell growth under aerobic growth conditions, whereas thiosulfate stimulated cell growth. Under anaerobic growth conditions, nitrate served as a final electron acceptor, but nitrite or sulfur-containing compounds such as elemental sulfur, thiosulfate, sulfate and sulfite could not act as final electron acceptors. The G+C content of the genomic DNA was 51 mol%. Phylogenetic analysis based on 16S rRNA sequences indicated that strain VA1 exhibited close relationships to species of the genus Pyrobaculum. A DNA-DNA hybridization study revealed a low level of similarity (< or = 18%) between strain VA1 and previously described members of the genus Pyrobaculum. Physiological characteristics also indicated that strain VA1 was distinct from these Pyrobaculum species. Our results indicate that isolate VA1 represents a novel species, named Pyrobaculum calidifontis. 相似文献
5.
Hiroshi Aiba Yoshiaki Nishiya Masayuki Azuma Yuusuke Yokooji Haruyuki Atomi Tadayuki Imanaka 《Bioscience, biotechnology, and biochemistry》2013,77(7):1094-1102
A hyperthermophilic archaeon was isolated from a terrestrial hot spring on Kodakara Island, Japan and designated as Thermoproteus sp. glucose dehydrogenase (GDH-1). Cell extracts from cells grown in medium supplemented with glucose exhibited NAD(P)-dependent glucose dehydrogenase activity. The enzyme (TgGDH) was purified and found to display a strict preference for d-glucose. The gene was cloned and expressed in Escherichia coli, resulting in the production of a soluble and active protein. Recombinant TgGDH displayed extremely high thermostability and an optimal temperature higher than 85 °C, in addition to its strict specificity for d-glucose. Despite its thermophilic nature, TgGDH still exhibited activity at 25 °C. We confirmed that the enzyme could be applied for glucose measurements at ambient temperatures, suggesting a potential of the enzyme for use in measurements in blood samples. 相似文献
6.
Phosphoserine phosphatase (PSP) catalyzes the final and irreversible step of L‐serine synthesis by hydrolyzing phosphoserine to produce L ‐serine and inorganic phosphate. Developing a therapeutic drug that interferes with serine production is of great interest to regulate the pathogenicity of some bacteria and control D ‐serine levels in neurological diseases. We determined the crystal structure of PSP from the hyperthermophilic archaeon Thermococcus onnurineus at 1.8 Å resolution, revealing an NDSB ligand bound to a novel site that is located in a fissure between the catalytic domain and the CAP module. The structure shows a half‐open conformation of the CAP 1 module with a unique protruding loop of residues 150–155 that possesses a helical conformation in other structures of homologous PSPs. Activity assays indicate that the enzyme exhibits marginal PSP activity at low temperature but a sharp increase in the kcat/KM value, approximately 22 fold, when the temperature is increased. Structural and biochemical analyses suggest that the protruding loop in the active site might be an essential component for the regulation of the activity of PSP from hyperthermophilic T. onnurineus. Identification of this novel binding site distantly located from the catalytic site may be exploited for the development of effective therapeutic allosteric inhibitors against PSP activity. © Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
7.
The sequence of a subtilisin-type protease (aerolysin) from the hyperthermophilic archaeum Pyrobaculum aerophilum reveals sites important to thermostability. 总被引:2,自引:1,他引:2 下载免费PDF全文
P. Vlkl P. Markiewicz K. O. Stetter J. H. Miller 《Protein science : a publication of the Protein Society》1994,3(8):1329-1340
The hyperthermophilic archaeum Pyrobaculum aerophilum grows optimally at 100 degrees C and pH 7.0. Cell homogenates exhibit strong proteolytic activity within a temperature range of 80-130 degrees C. During an analysis of cDNA and genomic sequence tags, a genomic clone was recovered showing strong sequence homology to alkaline subtilisins of Bacillus sp. The total DNA sequence of the gene encoding the protease (named "aerolysin") was determined. Multiple sequence alignment with 15 different serine-type proteases showed greatest homology with subtilisins from gram-positive bacteria rather than archaeal or eukaryal serine proteases. Models of secondary and tertiary structure based on sequence alignments and the tertiary structures of subtilisin Carlsberg, BPN', thermitase, and protease K were generated for P. aerophilum subtilisin. This allowed identification of sites potentially contributing to the thermostability of the protein. One common transition put alanines at the beginning and end of surface alpha-helices. Aspartic acids were found at the N-terminus of several surface helices, possibly increasing stability by interacting with the helix dipole. Several of the substitutions in regions expected to form surface loops were adjacent to each other in the tertiary structure model. 相似文献
8.
ORF PAE1610 from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum was first annotated as the conjectural pgi gene coding for hypothetical phosphoglucose isomerase (PGI). However, we have recently identified this ORF as the putative pgi/pmi gene coding for hypothetical bifunctional phosphoglucose/phosphomannose isomerase (PGI/PMI). To prove its coding function, ORF PAE1610 was overexpressed in Escherichia coli, and the recombinant enzyme was characterized. The 65-kDa homodimeric protein catalyzed the isomerization of both glucose-6-phosphate and mannose-6-phosphate to fructose-6-phosphate at similar catalytic rates, thus characterizing the enzyme as bifunctional PGI/PMI. The enzyme was extremely thermoactive; it had a temperature optimum for catalytic activity of about 100°C and a melting temperature for thermal unfolding above 100°C. 相似文献
9.
10.
11.
Roos AK Andersson CE Bergfors T Jacobsson M Karlén A Unge T Jones TA Mowbray SL 《Journal of molecular biology》2004,335(3):799-809
Ribose-5-phosphate isomerases (EC 5.3.1.6) inter-convert ribose-5-phosphate and ribulose-5-phosphate. This reaction allows the synthesis of ribose from other sugars, as well a means for salvage of carbohydrates after nucleotide breakdown. Two unrelated types of enzyme are known to catalyze the isomerization. The most common one, RpiA, is present in almost all organisms. The second type, RpiB, is found in many bacterial species.Here, we demonstrate that the RpiB from Mycobacterium tuberculosis (Rv2465c) has catalytic properties very similar to those previously reported for the Escherichia coli RpiB enzyme. Further, we report the structure of the mycobacterial enzyme, solved by molecular replacement and refined to 1.88A resolution. Comparison with the E.coli structure shows that there are important differences in the two active sites, including a change in the position and nature of the catalytic base. Sequence comparisons reveal that the M.tuberculosis and E.coli RpiB enzymes are in fact representative of two distinct sub-families. The mycobacterial enzyme represents a type found only in actinobacteria, while the enzyme from E.coli is typical of that seen in many other bacterial proteomes. Both RpiBs are very different from RpiA in structure as well as in the construction of the active site. Docking studies allow additional insights into the reactions of all three enzymes, and show that many features of the mechanism are preserved despite the different catalytic components. 相似文献
12.
Yutaka Kitamoto Hajime Akashi Hisashi Tanaka Nobuhiro Mori 《FEMS microbiology letters》1988,55(2):147-150
A novel type of trehalose phosphorylase was found in a basidiomycete. Flammulina velutipes . The enzyme catalyzes both the reversible phosphorolysis of trehalose to form α-glucose 1-phosphate and glucose and also the synthesis of trehalose. Comparison of the specific activity of trehalose phosphorylase with that of trehalase suggested that the function of the former enzyme was more important in the fruit-bodies of this fungus. 相似文献
13.
Henneke G Gueguen Y Flament D Azam P Querellou J Dietrich J Hübscher U Raffin JP 《Journal of molecular biology》2002,323(5):795-810
The molecular organization of the replication complex in archaea is similar to that in eukaryotes. Only two proteins homologous to subunits of eukaryotic replication factor C (RFC) have been detected in Pyrococcus abyssi (Pab). The genes encoding these two proteins are arranged in tandem. We cloned these two genes and co-expressed the corresponding recombinant proteins in Escherichia coli. Two inteins present in the gene encoding the small subunit (PabRFC-small) were removed during cloning. The recombinant protein complex was purified by anion-exchange and hydroxyapatite chromatography. Also, the PabRFC-small subunit could be purified, while the large subunit (PabRFC-large) alone was completely insoluble. The highly purified PabRFC complex possessed an ATPase activity, which was not enhanced by DNA. The Pab proliferating cell nuclear antigen (PCNA) activated the PabRFC complex in a DNA-dependent manner, but the PabRFC-small ATPase activity was neither DNA-dependent nor PCNA-dependent. The PabRFC complex was able to stimulate PabPCNA-dependent DNA synthesis by the Pabfamily D heterodimeric DNA polymerase. Finally, (i) the PabRFC-large fraction cross-reacted with anti-human-RFC PCNA-binding domain antibody, corroborating the conservation of the protein sequence, (ii) the human PCNA stimulated the PabRFC complex ATPase activity in a DNA-dependent way and (iii) the PabRFC complex could load human PCNA onto primed single-stranded circular DNA, suggesting that the PCNA-binding domain of RFC has been functionally conserved during evolution. In addition, ATP hydrolysis was not required either for DNA polymerase stimulation or PCNA-loading in vitro. 相似文献
14.
T. Henninger S. Anemüller S. Fitz-Gibbon J. H. Miller G. Schäfer C. L. Schmidt 《Journal of bioenergetics and biomembranes》1999,31(2):119-128
The crenarchaeon Pyrobaculum aerophilum is with an optimalgrowth temperature of 100 °C one of the most thermophilic organisms knownto possess an aerobic respiratory chain. The analysis of DNA sequences fromthe Pyrobaculum genome project lead to the identification of an openreading frame potentially coding for a Rieske iron-sulfur protein. Thecomplete gene (named parR) was cloned and sequenced. The deducedamino acid sequence displays unusual amino acid exchanges and a so farunknown sequence insertion. The N-terminus shows similarities to bacterialsignal sequences. Several forms of the gene were expressed in E.coli in order to verify the classification as a Rieske protein and tofacilitate biophysical studies. Soluble, thermo-stable proteins withcorrectly inserted iron-sulfur clusters were expressed from two versions ofthe gene. The 1–23 truncated holo-protein is redox active. Itdisplays the typical spectroscopic properties of a Rieske protein. The redoxpotential was determined to be +215 mV at pH 6.5 and is pH dependentabove pH 7.5 revealing the influence of two protonation equilibria with pKavalues of 8.1 and 9.8. Phylogenetic analysis demonstrates that the parRprotein clusters together with the two other available archaeal Rieskesequences from Sulfolobus on a separate branch of the phylogenetictree apart from the proteins from thermophilic bacteria like Aquifexand Thermus. 相似文献
15.
Membrane-bound proteases are involved in various regulatory functions. Our previous study indicated that the N-terminal region of an open reading frame, PH1510 (residues 16-236, designated as 1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii, is a serine protease with a catalytic Ser-Lys dyad that specifically cleaves the C-terminal hydrophobic residues of a membrane protein, the stomatin-homolog PH1511. In humans, an absence of stomatin is associated with a form of hemolytic anemia known as hereditary stomatocytosis, but the function of stomatin is not fully understood. Here, we report the crystal structure of 1510-N in dimeric form. Each active site of 1510-N is rich in hydrophobic residues, which accounts for the substrate-specificity. The monomer of 1510-N shows structural similarity to one monomer of Escherichia coli ClpP, an ATP-dependent tetradecameric protease. But, their oligomeric forms are different. Major contributors to dimeric interaction in 1510-N are the alpha7 helix and beta9 strand, both of which are missing from ClpP. While the long handle region of ClpP contributes to the stacking of two heptameric rings, the corresponding L2 loop of 1510-N is disordered because the region has little interaction with other residues of the same molecule. The catalytic Ser97 of 1510-N is in almost the same location as the catalytic Ser97 of E.coli ClpP, whereas another residue, Lys138, presumably forming the catalytic dyad, is located in the disordered L2 region of 1510-N. These findings suggest that the binding of the substrate to the catalytic site of 1510-N induces conformational changes in a region that includes loop L2 so that Lys138 approaches the catalytic Ser97. 相似文献
16.
Glycolysis and gluconeogenesis are central pathways of metabolism across all domains of life. A prominent enzyme in these pathways is phosphoglucose isomerase (PGI), which mediates the interconversion of glucose-6-phosphate and fructose-6-phosphate. The predatory bacterium Bdellovibrio bacteriovorus leads a complex life cycle, switching between intraperiplasmic replicative and extracellular ‘hunter’ attack-phase stages. Passage through this complex life cycle involves different metabolic states. Here we present the unliganded and substrate-bound structures of the B. bacteriovorus PGI, solved to 1.74 Å and 1.67 Å, respectively. These structures reveal that an induced-fit conformational change within the active site is not a prerequisite for the binding of substrates in some PGIs. Crucially, we suggest a phenylalanine residue, conserved across most PGI enzymes but substituted for glycine in B. bacteriovorus and other select organisms, is central to the induced-fit mode of substrate recognition for PGIs. This enzyme also represents the smallest conventional PGI characterized to date and probably represents the minimal requirements for a functional PGI. 相似文献
17.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V
max values and apparent K
m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway. 相似文献
18.
Characterization of an exo-beta-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 总被引:1,自引:0,他引:1 下载免费PDF全文
We previously clarified that the chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 produces diacetylchitobiose (GlcNAc(2)) as an end product from chitin. Here we sought to identify enzymes in T. kodakaraensis that were involved in the further degradation of GlcNAc(2). Through a search of the T. kodakaraensis genome, one candidate gene identified as a putative beta-glycosyl hydrolase was found in the near vicinity of the chitinase gene. The primary structure of the candidate protein was homologous to the beta-galactosidases in family 35 of glycosyl hydrolases at the N-terminal region, whereas the central region was homologous to beta-galactosidases in family 42. The purified protein from recombinant Escherichia coli clearly showed an exo-beta-D-glucosaminidase (GlcNase) activity but not beta-galactosidase activity. This GlcNase (GlmA(Tk)), a homodimer of 90-kDa subunits, exhibited highest activity toward reduced chitobiose at pH 6.0 and 80 degrees C and specifically cleaved the nonreducing terminal glycosidic bond of chitooligosaccharides. The GlcNase activity was also detected in T. kodakaraensis cells, and the expression of GlmA(Tk) was induced by GlcNAc(2) and chitin, strongly suggesting that GlmA(Tk) is involved in chitin catabolism in T. kodakaraensis. These results suggest that T. kodakaraensis, unlike other organisms, possesses a novel chitinolytic pathway where GlcNAc(2) from chitin is first deacetylated and successively hydrolyzed to glucosamine. This is the first report that reveals the primary structure of GlcNase not only from an archaeon but also from any organism. 相似文献
19.
Jinichiro Koga Makoto Yazawa Koji Miyamoto Emi Yumoto Tomoyoshi Kubota Tomoko Sakazawa Syun Hashimoto Masaki Sato Hisakazu Yamane 《The Journal of biological chemistry》2021,297(5)
Long-chain base phosphates (LCBPs) such as sphingosine-1-phosphate and phytosphingosine-1-phosphate function as abscisic acid (ABA)-mediated signaling molecules that regulate stomatal closure in plants. Recently, a glycoside hydrolase family 1 (GH1) β-glucosidase, Os3BGlu6, was found to improve drought tolerance by stomatal closure in rice, but the biochemical functions of Os3BGlu6 have remained unclear. Here we identified Os3BGlu6 as a novel GH1 glucocerebrosidase (GCase) that catalyzes the hydrolysis of glucosylceramide to ceramide. Phylogenetic and enzymatic analyses showed that GH1 GCases are widely distributed in seed plants and that pollen or anthers of all seed plants tested had high GCase activity, but activity was very low in ferns and mosses. Os3BGlu6 had high activity for glucosylceramides containing (4E,8Z)-sphingadienine, and GCase activity in leaves, stems, roots, pistils, and anthers of Os3BGlu6-deficient rice mutants was completely absent relative to that of wild-type rice. The levels of ceramides containing sphingadienine were correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. The levels of LCBPs synthesized from ceramides, especially the levels of sphingadienine-1-phosphate, were also correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. These results indicate that Os3BGlu6 regulates the level of ceramides containing sphingadienine, influencing the regulation of sphingadienine-1-phosphate levels and subsequent improvement of drought tolerance via stomatal closure in rice. 相似文献
20.
Galactose-1-phosphate uridylyltransferase (GalT) catalyzes the reversible transformation of uridine 5'-diphosphate glucose (UDPGlc) and galactose-1-phosphate into uridine 5'-diphosphate galactose (UDPGal) and glucose-1-phosphate through a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP-enzyme). The covalent linkage is a phosphoramidate formed between the UMP moiety and the His 166 N(epsilon)(2) of GalT, with His 166 N(delta1) retaining a proton throughout the catalytic cycle. Cys 160 and Ser 161 in Escherichia coli GalT are engaged in hydrogen bonding with the peripheral phosphoryl oxygen atoms of the substrate in the crystalline UMP-enzyme and in the crystalline complex of H166G-GalT with UDPGlc [Wedekind, J. E., Frey, P. A., and Rayment, I. (1996) Biochemistry 35, 11560-11569; Thoden, J. B., Ruzicka, F. J., Frey, P. A., Rayment, I., and Holden, H. M. (1997) Biochemistry 36, 1212-1222]. Site-directed mutagenesis, thermodynamic, transient kinetic, and steady-state kinetic studies have been performed to investigate the roles of Cys 160 and Ser 161 in catalysis. The absence of the thiol group of Cys 160 in the variants C160S and C160A did not seriously alter the enzymatic activity. However, the variant S161A displayed 7000-fold less activity than wild-type GalT. The low activity of S161A was directly related to impaired uridylylation rate constant (3.7 x 10(-)(2) s(-)(1)) and de-uridylylation rate constant (0.5 x 10(-)(2) s(-)(1)) resulting from a higher kinetic barrier for uridylyl-group transfer by the variant S161A as compared with the wild-type GalT. Equilibrium uridylylation studies showed that neither Cys 160 nor Ser 161 was involved in stabilizing the uridylyl-enzyme intermediate. The results lead to the conclusion that the conserved Cys 160 does not play a critical role in catalysis. Ser 161 is most likely involved in donating a hydrogen bond to the beta-phosphoryl group of a substrate, thereby providing proper orientation for nucleophilic catalysis. 相似文献