首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalized model is presented of agonist binding to ligand-gated ion channels (LGICs). Broad similarity in the structure of agonists suggests that the binding sites of LGICs may have evolved from a protobinding site. Aligned sequence data identified as a candidate for such a site a highly conserved 15 residue stretch of primary structure in the N-terminal extracellular region of all known LGIC subunits. We modeled this subregion, termed the cys-loop, as a rigid, amphiphilic beta-hairpin and propose that it may form a major determinant of a conserved structural binding cleft. In the model of the binding complex (1) an invariant aspartate residue at position 11 of the cys-loop is the anionic site interacting with the positively charged amine group of agonists, (2) a local dipole within the pi-electron system of agonists is favorably oriented in the electrostatic field of the invariant aspartate, (3) the epsilon ring-proton of a conserved aromatic residue at the turn of the cys-loop interacts orthogonally with the agonist pi-electron density at its electronegative center, and (4) selective recognition is partly a result of the type of amino acid residue at position 6 of the cys-loop. Additionally, formation of a hydrogen bond between the electronegative atom of the pi-electron system of agonist and a complementary group in the receptor may be important in the high-affinity binding of agonists.  相似文献   

2.
Affinity ligand HWRGWV has demonstrated the ability to isolate human immunoglobulin G (hIgG) from mammalian cell culture media. The ligand specifically binds hIgG through its Fc portion. This work shows that deglycosylation of hIgG has no influence on its binding to the HWRGWV ligand and the ligand does not compete with Protein A or Protein G in binding hIgG. It is suggested by the mass spectrometry (MS) data and docking simulation that HWRGWV binds to the pFc portion of hIgG and interacts with the amino acids in the loop Ser383–Asn389 (SNGQPEN) located in the CH3 domain. Subsequent modeling has suggested a possible three‐dimensional minimized solution structure for the interaction of hIgG and the HWRGWV ligand. The results support the fact that a peptide as small as a hexamer can have specific interactions with large proteins such as hIgG. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Jung HJ  Kim S  Kim YJ  Kim MK  Kang SG  Lee JH  Kim W  Cha SS 《Molecules and cells》2012,33(2):163-171
The DJ-1 superfamily (DJ-1/ThiJ/PfpI superfamily) is distributed across all three kingdoms of life. These proteins are involved in a highly diverse range of cellular functions, including chaperone and protease activity. DJ-1 proteins usually form dimers or hexamers in vivo and show at least four different binding orientations via distinct interface patches. Abnormal oligomerization of human DJ-1 is related to neurodegenerative disorders including Parkinson’s disease, suggesting important functional roles of quaternary structures. However, the quaternary structures of the DJ-1 superfamily have not been extensively studied. Here, we focus on the diverse oligomerization modes among the DJ-1 superfamily proteins and investigate the functional roles of quaternary structures both computationally and experimentally. The oligomerization modes are classified into 4 types (DJ-1, YhbO, Hsp, and YDR types) depending on the distinct interface patches (I-IV) upon dimerization. A unique, rotated interface via patch I is reported, which may potentially be related to higher order oligomerization. In general, the groups based on sequence similarity are consistent with the quaternary structural classes, but their biochemical functions cannot be directly inferred using sequence information alone. The observed phyletic pattern suggests the dynamic nature of quaternary structures in the course of evolution. The amino acid residues at the interfaces tend to show lower mutation rates than those of non-interfacial surfaces.  相似文献   

4.
The members of the mechanistically diverse enolase superfamily catalyze different overall reactions. Each shares a partial reaction in which an active site base abstracts the alpha-proton of the carboxylate substrate to generate an enolate anion intermediate that is stabilized by coordination to the essential Mg(2+) ion; the intermediates are then directed to different products in the different active sites. In this minireview, our current understanding of structure/function relationships in the divergent members of the superfamily is reviewed, and the use of this knowledge for our future studies is proposed.  相似文献   

5.
Ruble DM  Foster DN 《Immunogenetics》2000,51(4-5):347-357
 Differential hybridization cloning has been used to isolate a novel chicken thymic activation and developmental sequence (cTADS). The nucleotide sequence of the cTADS cDNA predicts an open reading frame of 439 amino acids. The inferred cTADS protein possesses a hydrophobic membrane-spanning domain and putative intracellular kinase activation domains. Its extracellular domain shares similarities with the immunoglobulin protein superfamily, featuring two conserved immunoglobulin folds that resemble C1 and C2 constant regions. The cTADS sequence shows similarity to a subfamily of proteins involved in cellular adhesion: chicken neural cell adhesion molecule and human opioid-binding adhesion molecule, and to proteins that have a biological role in intracellular signaling: mouse platelet-derived growth factor receptor and human fibroblast growth factor receptor. cTADS is differentially expressed in chicken thymic cells during embryonic development and during activation through the T-cell receptor. Sequence similarities and expression patterns suggest that cTADS could be involved in cell recognition and adhesion, and/or peptide ligand binding. Received: 1 May 1999 / Revised: 1 October 1999  相似文献   

6.
 Suspension and attachment cultures of Y79 human retinoblastoma cells were treated with all-trans retinoic acid (RA) for up to 10 days to assess its effect on growth and cell-surface expression of immunoglobulin superfamily antigens MHC class I and class II, ICAM-1, NCAM and Thy1. RA up to 10 μM induced growth inhibition, and marked morphological differentiation with extension of prominent processes resembling neurites was seen in attachment cultures. However, above 10 μM RA produced extensive cell death. We also observed increased cell-surface expression of MHC class I, ICAM-1, NCAM and Thy1 on Y79 cells treated with 10 μM over 10 days; constitutive MHC class II expression was not apparent, nor did RA treatment appear to induce Y79 cells to express MHC class immunoreactivity. The up-modulation of cell-adhesion molecules (NCAM, ICAM-1 and Thy1) and immune recognition molecules (NCAM, ICAM-1 and MHC class I), associated with reduced growth and tumour cell differentiation, suggests that RA may have a potential role in regulating the growth and development of retinoblastoma tumours. Received: 29 August 1996 / Accepted: 16 January 1997  相似文献   

7.
肝再生增强因子超家族研究进展   总被引:7,自引:0,他引:7  
从断奶大鼠的肝脏中纯化得到了肝刺激物质(HSS)的有效成份,即肝再生增强因子(ALR)的蛋白质,酶解并对其多肽末端测序,据此推导出简并核苷酸序列,合成探针,对大鼠肝脏来源的cDNA文库进行筛选,首选获得了大鼠ALR的cDNA克隆,随后又分别克隆了人和小鼠的ALR的cDNA。与此同时,从酵母细胞中克隆了与线粒体氧化--磷酸化功能密切相关的ERV1基因,然后克隆了人的ERV1同源基因,从功能上证实人  相似文献   

8.
A novel inhibitory receptor of immunoglobin superfamily (IgSF), IgSF member 13 (IgSF13), has been identified from human dendritic cells (DC). IgSF13 is a type I transmembrane protein containing an N-terminal signal peptide, a extracellular region with a single Ig V-like domain, a transmembrane region, and a cytoplasmic tail with two classical immunoreceptor tyrosine-based inhibitory motifs (ITIM), suggesting its inhibitory function. IgSF13 shows significant homology to human CMRF35 and pIgR. IgSF13 gene is mapped to chromosome 17q25.2, very close to that of CMRF35. IgSF13 is preferentially expressed in myelo-monocytic cells, including monocytes, monocyte-derived DC, and monocyte-related cell lines. Upon pervanadate treatment, IgSF13 was hyper-phosphorylated and associated with Src homology-2 domain-containing phosphatases SHP-1 and SHIP, but not SHP-2. The identification of IgSF13 as a novel ITIM-bearing receptor selectively expressed by DC and monocytes suggests that it may be potentially involved in the negative regulation of specific leukocyte population.  相似文献   

9.
Immunoglobulin superfamily (IgSF) proteins are involved in cell adhesion, cell communication and immune functions. In this study, 152 IgSF genes containing at least one immunoglobulin (Ig) domain were predicted in the Bombyx mori silkworm genome. Of these, 145 were distributed on 25 chromosomes with no genes on chromosomes 16, 18 and 26. Multiple sequence alignments and phylogenetic evolution analysis indicated that IgSFs evolved rapidly. Gene ontology (GO) annotation indicated that IgSF members functioned as cellular components and in molecular functions and biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IgSF proteins were involved in signal transduction, signaling molecules and interaction, and cell communication. Microarray-based expression data showed tissue expression for 136 genes in anterior silkgland, middle silkgland, posterior silkgland, testis, ovary, fat body, midgut, integument, hemocyte, malpighian tubule and head. Expression pattern of IgSF genes in the silkworm ovary and midgut was analyzed by RNA-Seq. Expression of 105 genes was detected in the ovary in strain Dazao. Expression in the midgut was detected for 74 genes in strain Lan5 and 75 genes in strain Ou17. Expression of 34 IgSF genes in the midgut relative to the actin A3 gene was significantly different between strains Lan5 and Ou17. Furthermore, 1 IgSF gene was upregulated and 1 IgSF gene was downregulated in strain Lan5, and 4 IgSF genes were upregulated and 2 IgSF genes were downregulated in strain Ou17 after silkworms were challenged with B. mori cypovirus (BmCPV), indicating potential involvement in the response to BmCPV-infection. These results provide an overview of IgSF family members in silkworms, and lay the foundation for further functional studies.  相似文献   

10.
The alpha-D-phosphohexomutase superfamily is composed of four related enzymes that catalyze a reversible, intramolecular phosphoryl transfer on their sugar substrates. The enzymes in this superfamily play important and diverse roles in carbohydrate metabolism in organisms from bacteria to humans. Recent structural and mechanistic studies of one member of this superfamily, phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa, have provided new insights into enzyme mechanism and substrate recognition. Here we use sequence-sequence and sequence-structure comparisons via evolutionary trace analysis to examine 71 members of the alpha-D-phosphohexomutase superfamily. These analyses show that key residues in the active site, including many of those involved in substrate contacts in the P. aeruginosa PMM/PGM complexes, are conserved throughout the enzyme family. Several important regions show class-specific differences in sequence that appear to be correlated with differences in substrate specificity exhibited by subgroups of the family. In addition, we describe the translocation of a 20-residue segment containing the catalytic phosphoserine of phosphoacetylglucosamine mutase, which uniquely identifies members of this subgroup.  相似文献   

11.
Cytochromes P450 comprise a large superfamily and several of their isoforms play a crucial role in metabolism of xenobiotics, including drugs. Although these enzymes demonstrate broad and cross‐substrate specificity, different cytochrome P450 subfamilies exhibit certain selectivity for some types of substrates. Analysis of amino acid residues of the active sites of six cytochrome subfamilies (CYP1А, CYP2А, CYP2С, CYP2D, CYP2E and CYP3А) enables to define subfamily‐specific patterns that consist of four residues. These residues are located on the periphery of the active sites of these cytochromes. We suggest that they can form a primary binding site at the entrance to the active site, defining cytochrome substrate recognition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Hemerythrin‐like proteins have generally been studied for their ability to reversibly bind oxygen through their binuclear nonheme iron centers. However, in recent years, it has become increasingly evident that some members of the hemerythrin‐like superfamily also participate in many other biological processes. For instance, the binuclear nonheme iron site of YtfE, a hemerythrin‐like protein involved in the repair of iron centers in Escherichia coli, catalyzes the reduction of nitric oxide to nitrous oxide, and the human F‐box/LRR‐repeat protein 5, which contains a hemerythrin‐like domain, is involved in intracellular iron homeostasis. Furthermore, structural data on hemerythrin‐like domains from two proteins of unknown function, PF0695 from Pyrococcus furiosus and NMB1532 from Neisseria meningitidis, show that the cation‐binding sites, typical of hemerythrin, can be absent or be occupied by metal ions other than iron. To systematically investigate this functional and structural diversity of the hemerythrin‐like superfamily, we have collected hemerythrin‐like sequences from a database comprising fully sequenced proteomes and generated a cluster map based on their all‐against‐all pairwise sequence similarity. Our results show that the hemerythrin‐like superfamily comprises a large number of protein families which can be classified into three broad groups on the basis of their cation‐coordinating residues: (a) signal‐transduction and oxygen‐carrier hemerythrins (H‐HxxxE‐HxxxH‐HxxxxD); (b) hemerythrin‐like (H‐HxxxE‐H‐HxxxE); and, (c) metazoan F‐box proteins (H‐HExxE‐H‐HxxxE). Interestingly, all but two hemerythrin‐like families exhibit internal sequence and structural symmetry, suggesting that a duplication event may have led to the origin of the hemerythrin domain.  相似文献   

13.
Electrostatic interactions play important roles in diverse biological phenomena controlling the function of many proteins. Polar molecules can be studied with the FDPB method solving the Poisson-Boltzmann equation on a finite difference grid. A method for the prediction of pK(a)s and redox potentials in the thioredoxin superfamily is introduced. The results are compared with experimental pK(a) data where available, and predictions are made for members lacking such data. Studying CxxC motif variation in the context of different background structures permits analysis of contributions to cysteine DeltapK(a)s. The motif itself and the overall framework regulate pK(a) variation. The reported method includes generation of multiple side-chain rotamers for the CxxC motif and is an effective predictive tool for functional pK(a) variation across the superfamily. Redox potential follows the trend in cysteine pK(a) variation, but some residual discrepancy indicates that a pH-independent factor plays a role in determining redox potentials for at least some members of the superfamily. A possible molecular basis for this feature is discussed.  相似文献   

14.
The amino acid‐polyamine‐organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance‐Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K+ Uptake Permease), BenE (Benzoate:H+ Virginia Symporter), and AE (Anion Exchanger). The topology of the well‐characterized human Anion Exchanger 1 (AE1) conforms to a UraA‐like topology of 14 TMSs (12 α‐helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT‐like fold, defined earlier (Proteins. 2014 Feb;82(2):336‐46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations. Proteins 2014; 82:2797–2811. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
基于实验验证的22种大肠杆菌K12的转录因子结合位点序列,分析了转录因子结合位点每一位置的碱基保守性,提出了预测转录因子结合位点的位置权重矩阵打分函数算法(PWMSA)。利用self-consistency和cross-validation两种检验方法对此算法进行检验,self-consistency检验总的预测成功率达到87.59%,cross-validation检验成功率达到85.48%。对基因间序列进行搜索,获得了多个可能的转录因子结合位点。  相似文献   

16.
Members of the immunoglobulin superfamily in bacteria.   总被引:4,自引:0,他引:4       下载免费PDF全文
We report a prediction that two prokaryotic proteins contain immunoglobulin superfamily domains. Immunoglobulin-like folds have been identified previously in prokaryotic proteins, but these share no recognizable sequence similarity with eukaryotic immunoglobulin superfamily (IgSF) folds, and may be the result of the physics and chemistry of proteins favoring certain common folds. In contrast, the prokaryotic proteins identified have sequences whose match to the immunoglobulin superfamily can be detected by hidden Markov modeling, BLASTP matches, key residue analysis, and secondary structure predictions. We propose that these prokaryotic immunoglobulin-like domains are almost certain to be related by divergence from a common ancestor to eukaryotic immunoglobulin superfamily domains.  相似文献   

17.
The muscle protein myosin binding protein C (MyBPC) is a large multi-domain protein whose role in the sarcomere is complex and not yet fully understood. Mutations in MyBPC are strongly associated with the heart disease familial hypertrophic cardiomyopathy (FHC) and these experiments of nature have provided some insight into the intricate workings of this protein in the heart. While some regions of the MyBPC molecule have been assigned a function in the regulation of muscle contraction, the interaction of other regions with various parts of the myosin molecule and the sarcomeric proteins, actin and titin, remain obscure. In addition, several intra-domain interactions between adjacent MyBPC molecules have been identified. Although the basic structure of the molecule (a series of immunoglobulin and fibronectin domains) has been elucidated, the assembly of MyBPC in the sarcomere is a topic for debate. By analysing the MyBPC sequence with respect to FHC-causing mutations it is possible to identify individual residues or regions of each domain that may be important either for binding or regulation. This review looks at the current literature, in concert with alignments and the structural models of MyBPC, in an attempt to understand how FHC mutations may lead to the disease state.  相似文献   

18.
Pyriproxyfen is a juvenile hormone mimic of vital importance for insect development with little risk to humans. This study was performed to investigate whether large doses of pyriproxyfen affect the immune response in mammals. Mice were immunized thrice with ovalbumin in 5% ethanol, with or without pyriproxyfen or alum. Large doses of pyriproxyfen (9 or 15 mM) significantly enhanced specific total IgG immune response. This enhancement was no longer present 24 hr after treatment with pyriproxyfen. These results suggest that pyriproxyfen is a safe chemical. Moreover, pyriproxyfen induced higher titers of IgG2a and enhanced tumor necrosis factor‐alpha and gamma‐interferon responses whereas alum induced IgG1 with enhanced interleukin‐4 and ‐10. These observations indicate that the mechanism of immune enhancement by pyriproxyfen may differ from that of alum.  相似文献   

19.
An enigma in the field of peptide transport is the structural basis for ligand promiscuity, as exemplified by PepT1, the mammalian plasma membrane peptide transporter. Here, we present crystal structures of di‐ and tripeptide‐bound complexes of a bacterial homologue of PepT1, which reveal at least two mechanisms for peptide recognition that operate within a single, centrally located binding site. The dipeptide was orientated laterally in the binding site, whereas the tripeptide revealed an alternative vertical binding mode. The co‐crystal structures combined with functional studies reveal that biochemically distinct peptide‐binding sites likely operate within the POT/PTR family of proton‐coupled symporters and suggest that transport promiscuity has arisen in part through the ability of the binding site to accommodate peptides in multiple orientations for transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号