首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Mixed-species forests are known to be highly productive systems because of their high species diversity, including taxonomic diversity (species richness) and structural diversity. Recent empirical evidence also points to plant maximum height, as a functional trait that potentially drives forest above-ground biomass (AGB). However, the interrelations between these biotic variables are complex, and it is not always predictable if structural diversity attributes or functional metrics of plant maximum height would act as the most important determinant of stand biomass. Here we evaluated the relative importance of structural diversity attributes and functional metrics of plant maximum height (Hmax) in predicting and mediating AGB response to variation in species richness in mixed-species forests, while also accounting for fine-scale environmental variation. Location: Northern Benin. Methods: We used forest inventory data from mixed-species stands of native and exotic species. We quantified structural diversity as coefficient of variation of tree diameter at breast height (CVdbh) and of height (CVHt). For plant Hmax, we computed three metrics: functional range (FRHmax), functional divergence (FDHmax) and community-weighted mean (CWMHmax). We used topographical variables such as elevation and slope to account for possible environmental effects. Simple and multiple mixed-effects models, and structural equation models were performed to assess the direct and indirect links of AGB with species richness through structural diversity attributes and functional metrics of plant Hmax. Results: Species richness and CVdbh were positively related to AGB, while functional metrics of plant Hmax were not. Structural equation models revealed that species richness influenced AGB indirectly via CVdbh, which alone strongly promoted AGB. Elevation only had a positive direct effect on AGB. While increasing species richness enhanced CVdbh and functional measures of plant Hmax, there was no support for the latter mediating the effects of species richness on AGB. Conclusion: Structural diversity has a significant advantage in predicting and mediating the positive effect of species richness on AGB more so than functional measures of plant Hmax. We argue that structural diversity acts as a mechanism for the species richness–AGB relationship, and that maintaining high structural diversity would enhance biomass in mixed-species forests.  相似文献   

2.
3.
4.
常绿阔叶林为东亚亚热带地区的地带性植被, 对该地区的生物多样性维持和社会发展具有重要的意义。由于长期人类活动的影响, 目前我国分布的常绿阔叶林绝大部分为次生常绿阔叶林。探究次生与老龄常绿阔叶林群落特征的差异, 有利于了解人类干扰对亚热带常绿阔叶林的影响, 为其保护和恢复提供依据。本研究在古田山老龄与次生常绿阔叶林内共设置了29个0.04 ha样地, 比较两者在优势种组成、物种和功能多样性以及生物量等方面的差异。结果表明: (1)次生林与老龄林优势种组成相似, 二者均以甜槠(Castanopsis eyrei)、木荷(Schima superba)等典型常绿阔叶林优势种为主, 但这些树种在次生和老龄常绿阔叶林中的优势度次序不同。(2)整体而言, 次生林的Shannon-Wiener指数和功能离散度高于老龄林; 次生林与老龄林的物种Bray-Curtis指数和功能Sørensen指数均无显著差别。(3)就垂直层次而言, 次生林与老龄林在Shannon-Wiener指数和Bray-Curtis指数的差异主要体现在乔木层和灌木层。(4)就群落结构而言, 次生林的植株密度高于老龄林, 但群落水平和个体水平的生物量均显著小于老龄林。上述结果表明, 人类干扰改变了古田山常绿阔叶林群落的多个重要特征, 不同群落特征的恢复过程并不同步。因此, 对常绿阔叶林生物多样性和生态系统功能的保护和恢复需要从多个角度着手。  相似文献   

5.
Aims Using a network of permanent plots, we determined how multiple old-growth forests changed over an 18–19-year period at a state-wide scale. This examination of change allowed us to assess how the compositional and structural stability of each forest varied with site characteristics (topography, physiography and productivity) and stochastic disturbance.Methods In 2011, we resampled 150 plots distributed across five old-growth hardwood forests in Indiana, USA that were originally sampled in 1992–1993. Within each plot, we relocated and remeasured the diameter at breast height (dbh) of all trees (≥10.0cm) present during the 1992–1993 sample, which allowed us to track their individual fates through time for growth and mortality calculations. Trees that grew to ≥10.0cm dbh since plot establishment were designated as ingrowth. The dbh and species of all saplings (stems ≥2.0cm but <10.0cm dbh) were also recorded. For each forest, we calculated density (stems ha-1), basal area (BA; m 2 ha-1) and importance value (relative density + relative BA)/2) of trees by species. For saplings, density per ha was calculated by species for each forest. We also calculated annual mortality rate (AMR) for three diameter classes (10–29.9, 30–59.9 and ≥60cm) and species richness (S), evenness (E) and Shannon–Weiner diversity (H?) for the tree and sapling layers. Differences between years were compared for each forest using paired t -tests and Wilcoxon signed rank tests.Important findings Although we observed commonality in changes across some sites, our results suggest that these forests differ in their rates and trajectories of change. Changes in total stand BA and density varied across sites and were influenced by past disturbance and mortality rates. We observed a general increase in the overstory dominance of Acer saccharum coupled with a general decrease in the dominance of Quercus section Lobatae (red oak group) species. Mortality of overstory trees present in 1992–1993 ranged from 27% to 49% over the study period (mean AMR 1.6–3.7%). Most sites experienced greater mortality of early and mid-successional species, but one site experienced heavy mortality of Fagus grandifolia, a shade-tolerant late-successional species. Shade tolerant species, A. saccharum in particular, dominated the sapling layer at most sites. However, recruitment of this species into larger size classes did not occur uniformly across all sites and the species was comparatively uncommon at one site. Overall, our results suggest that old-growth remnants, even within a single state, cannot be viewed as equivalent units with regard to research or management. Stochastic disturbance events and surrounding land use may have amplified effects on small scattered remnants. Therefore, continued monitoring of these rare, but biologically important forests is critical to their long-term management and protection.  相似文献   

6.
7.
Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven‐dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter–height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter–height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.  相似文献   

8.
We characterized stand structure and floristic composition of woody life forms in three, 16–18 yr old secondary stands that regenerated after pasture abandonment, and three nearby old-growth stands of tropical rain forest in lowland Costa Rica. Basal area and stem density for each of four plant size classes (seedlings, saplings, treelets, trees) were similar among stand types, but density of adult canopy palms (individuals 10 cm DBH), was lower in the secondary stands. We estimate that 15% of the basal area of stems 10 cm DBH correspond to remnant trees in our secondary stands. The observed rapid woody regrowth compared to other published studies in the lowland neotropics, can be attributed to moderate land use and possibly, to the influence of nutrient-rich volcanic soils in the study area. Overall, plant species richness was lower in the secondary stands, but this difference was less pronounced in the smallest size classes (seedlings, saplings). Median percent similarity of all pairwise stand comparisons showed that floristic composition of saplings (stems 1 m tall and 5 cm DBH) was more similar between secondary and old-growth stands than for trees (stems 10 cm DBH). Because the potential value of secondary forests in conserving woody plant diversity appears highest for the young size classes, we suggest that further studies on floristic composition, especially those addressing the dynamics of the understory component, are needed to refine our understanding of the role of this natural resource in the maintenance of plant biodiversity in disturbed landscapes.  相似文献   

9.
Despite the increasing interest in the role of African savannah and woodlands on the global carbon cycle, little is known about the above-ground biomass (AGB) and the factors affecting it in these ecosystems in West Africa. We estimated AGB in different vegetation types of a forest–savannah mosaic in Togo, and we investigated the relationship between AGB, structural and diversity attributes. We also assessed the effects of using the ≥5 or ≥10 cm diameter threshold on AGB estimates. We sampled tree diameter, height and species of all trees ≥5 cm diameter following standardised protocols in 160 plots of 50 × 20 m (50 × 10 m for riparian). Above-ground biomass (AGB) (all trees ≥5 cm diameter) ranged from 6.2 Mg/ha in shrub savannah to 292 Mg/ha in riparian forest and showed significant differences between vegetation types. Differences in AGB were related to structural attributes, with little influence of diversity attributes. The effects of minimum tree diameter size (5 or 10 cm) on AGB estimates were negligible. At a landscape level, closed-canopy and open forests stored important quantities of carbon. We highlight the importance of the forest–savannah mosaic as a large carbon pool, which could be released if converted to another land cover type.  相似文献   

10.
Relationships between canopy cover and tree regeneration were determined for various species in cove forests of the Great Smoky Mountains. Old-growth stands were sampled with six plots covering a total area of 4.8 ha. Each plot was subdivided into contiguous 10×10 m quadrats. Canopy cover overlying each of the 480 quadrats was characterized with three different indices based on visual estimates of cover. Influences of: (1) overlying cover, (2) proximate openings, and (3) total area of proximate openings on quadrat regeneration densities were determined. Most species reproducing by seed and some species reproducing by vegetative means had higher densities in quadrats with openings, but only the intolerants were highly dependent on gaps. Tsuga canadensis, a very shade-tolerant species, was one of the few species with abundant regeneration beneath dense canopy cover. In general, understory areas near gaps had somewhat higher regeneration densities than other areas with overlying cover. Several shade-tolerant species showed a positive regeneration density response to canopy openings and an ability to regenerate in gaps 0.01–0.03 ha in area. These openings were too small for intolerant species. Many species exhibited a positive response to total size of the proximate opening(s). A sharp increase in regeneration density with area of the opening(s) was evident at approximately 0.04 ha for the shade-intolerant species.  相似文献   

11.
12.
附生地衣是森林附生植物的重要类群之一, 在维护森林生态系统的物种多样性以及水分和养分循环等方面发挥着重要作用。作者于2005年12月至2006年5月利用树干取样法调查了云南哀牢山徐家坝地区原生山地常绿阔叶林及其次生群落栎类萌生林、滇山杨(Populus bonatii)林和花椒(Zanthoxylum bungeanum)人工林中525株不同种类和径级树木距地面 0–2.0 m处附生地衣的组成和分布, 并收集了各个群落地面上凋落的地衣, 分析了林冠层附生地衣的物种组成。研究结果表明, 该区森林中附生地衣物种比较丰富。共收集到附生地衣61种, 分属17科29属, 其中原生林、栎类萌生林、滇山杨林和花椒人工林分别有51、53、46和23种。在树干距地面 0–2.0 m位置, 各群落中的附生地衣组成明显不同;但在林冠层中, 各群落内的附生地衣基本相似。原生林中附生地衣种类较多, 但分布不均匀。树干附生地衣的Shannon-Wiener和Simpson多样性指数以栎类萌生林最高, 分别为2.71和0.89;花椒林和滇山杨林次之, 分别为2.43–2.45和0.88–0.89;原生林最低, 为1.25和0.67。树干方位、宿主种类和宿主径级等都对附生地衣的物种组成和多样性有着重要影响, 附生地衣更多地出现于树干南向方位, 云南越桔(Vaccinium duclouxii)的附生地衣最为丰富, 胸径5.0–25.0 cm的树木上附生地衣较多。哀牢山山地森林群落中丰富的附生地衣种类及物种多样性在维系本区山地森林生态系统生物多样性格局方面具有重要的作用。  相似文献   

13.
A procedure is described for obtaining allometric regression equations to estimate non-destructively and in a cost-effective manner the current year's above-ground vegetative and reproductive biomass of Vitis vinifera L. Merlot' throughout the growing season. Significant relationships were obtained over a 3-year period (1998-2000) between the dimensions of an individual shoot per vine (i.e. diameter and length) and dry weights of its primary stem, primary leaves and lateral growth. The dry mass of a grape was best estimated from measurements of the basal diameter of the bunch peduncle. Introducing cumulative degree-days as an additional explanatory variable in the equations allowed them to be used irrespective of year and growth stage. Multi-year regressions were used to quantify in detail the seasonal evolution of mature grapevine biomass under the climatic conditions of the Bordeaux area, France, and for differing levels of soil nitrogen.  相似文献   

14.
Tropical montane cloud forests (TMCFs) harbour high levels of biodiversity and large carbon stocks. Their location at high elevations make them especially sensitive to climate change, because a warming climate is enhancing upslope species migration, but human disturbance (especially fire) may in many cases be pushing the treeline downslope. TMCFs are increasingly being affected by fire, and the long‐term effects of fire are still unknown. Here, we present a 28‐year chronosequence to assess the effects of fire and recovery pathways of burned TMCFs, with a detailed analysis of carbon stocks, forest structure and diversity. We assessed rates of change of carbon (C) stock pools, forest structure and tree‐size distribution pathways and tested several hypotheses regarding metabolic scaling theory (MST), C recovery and biodiversity. We found four different C stock recovery pathways depending on the selected C pool and time since last fire, with a recovery of total C stocks but not of aboveground C stocks. In terms of forest structure, there was an increase in the number of small stems in the burned forests up to 5–9 years after fire because of regeneration patterns, but no differences on larger trees between burned and unburned plots in the long term. In support of MST, after fire, forest structure appears to approximate steady‐state size distribution in less than 30 years. However, our results also provide new evidence that the species recovery of TMCF after fire is idiosyncratic and follows multiple pathways. While fire increased species richness, it also enhanced species dissimilarity with geographical distance. This is the first study to report a long‐term chronosequence of recovery pathways to fire suggesting faster recovery rates than previously reported, but at the expense of biodiversity and aboveground C stocks.  相似文献   

15.
以辽东山区次生林为研究对象,分析4 hm2样地Gleason丰富度指数、Simpson优势度指数、Shannon多样性指数和Pielou均匀度指数的空间分布特征及其与尺度的关系.结果表明: 4个多样性指数的空间分布均表现出较高的空间异质性;4个多样性指数的方差随尺度的增加其变化趋势有所差异;4个多样性指数的变异系数随尺度的增加呈下降趋势;乔木层的4个多样性指数值高于灌木层,且随尺度增加其变化趋势有所差异.在分析辽东山区次生林物种多样性时应考虑尺度效应.  相似文献   

16.
辽东山区天然次生林的数量分类   总被引:19,自引:1,他引:19  
结合DCA排序和TW IN SPAN分类结果,将辽东山区天然次生林划分为5个群落类型:花曲柳林、蒙古栎林、阔叶混交林、水曲柳林、胡桃楸林。DCA排序与TW IN SPAN分类产生了较一致的分类结果。DCA第一轴代表的环境意义为坡向。花曲柳林多分布于阳坡的中坡及中上坡,蒙古栎林多分布在中上坡。花曲柳与蒙古栎常混生在一起,随着坡位上升,花曲柳优势度下降,而蒙古栎优势度增加。阔叶混交林多位于阴坡,乔木层没有稳定和绝对优势种,多以假色槭、风桦、色木槭为优势种,但假色槭分布于乔木层第2亚层。水曲柳林多分布在中下坡。胡桃楸分布在山下部,喜潮湿生境。色木槭在辽东山区分布广泛,重要值较高,且更新良好,很可能是群落演替顶级物种。辽东山区天然次生林林下藤本植株数量多,以五味子、软枣猕猴桃、狗枣猕猴桃为主。  相似文献   

17.
Species richness and abundance are the two most important diversity variables. Species abundance is additive when aggregated across spatial scale, whereas species richness is non-additive. This study analyzes the effect of spatial scale and site on species abundance and richness in a 25-ha temperate forest plot in the Changbai Mountains, northeastern China. The result shows that species abundance and richness are not only dependent on spatial scales, but also dependent on site. Species abundance responds linearly to changes of spatial scale with no intersection in different sites of the study area. However, although species richness also increases with the increase of spatial scale, there are some intersections for the different sites, suggesting that a species-rich site does not always have a high value if the spatial scale is changed. In all, with respect to additive variables, it is relatively easy to extrapolate them from one spatial scale to another spatial scale, as they and the spatial scale usually form a linear relationship. In contrast, non-additive variables are difficult to extrapolate across spatial scales, because they often respond nonlinearly to spatial scale changes. In order to extrapolate these non-additive variables across spatial scales, it is necessary to estimate the relationships between them and spatial scales. As a result, extrapolation of information among spatial scales may be possible, but very difficult, especially for non-additive variables. Because the 25-ha Changbai plot is very small compared to the extent of the world temperate forests, and the vegetation is a relatively uniform type, more such studies in other ecosystems are needed before theories and generalization about scaling effects can be formulated.  相似文献   

18.
Aim This study investigates how estimated tree aboveground biomass (AGB) of tropical montane rain forests varies with elevation, and how this variation is related to elevational change in floristic composition, phylogenetic community structure and the biogeography of the dominant tree taxa. Location Lore Lindu National Park, Sulawesi, Indonesia. Methods Floristic inventories and stand structural analyses were conducted on 13 plots (each 0.24 ha) in four old‐growth forest stands at 1050, 1400, 1800 and 2400 m a.s.l. (submontane to upper montane elevations). Tree AGB estimates were based on d.b.h., height and wood specific gravity. Phylogenetic diversity and biogeographical patterns were analysed based on tree family composition weighted by AGB. Elevational trends in AGB were compared with other Southeast Asian and Neotropical transect studies (n = 7). Results AGB was invariant from sub‐ to mid‐montane elevation (309–301 Mg ha?1) and increased slightly to 323 Mg ha?1 at upper montane elevation. While tree and canopy height decreased, wood specific gravity increased. Magnoliids accounted for most of the AGB at submontane elevations, while eurosids I (including Fagaceae) contributed substantially to AGB at all elevations. Phylogenetic diversity was highest at upper montane elevations, with co‐dominance of tree ferns, Podocarpaceae, Trimeniaceae and asterids/euasterids II, and was lowest at lower/mid‐montane elevations, where Fagaceae contributed > 50% of AGB. Biogeographical patterns showed a progression from dominant tropical families at submontane to tropical Fagaceae (Castanopsis, Lithocarpus) at lower/mid‐montane, and to conifers and Australasian endemics at upper montane elevations. Cross‐continental comparisons revealed an elevational AGB decrease in transects with low/no presence of Fagaceae, but relatively high AGB in montane forests with moderate to high abundance of this family. Main conclusions AGB is determined by both changes in forest structure and shifts in species composition. In our study, these two factors traded off so that there was no net change in AGB, even though there were large changes in forest structure and composition along the elevational gradient. Southeast Asian montane rain forests dominated by Fagaceae constitute important carbon stocks. The importance of biogeography and species traits for biomass estimation should be considered by initiatives to reduce emissions from deforestation and forest degradation (REDD) and in taxon choice in reforestation for carbon offsetting.  相似文献   

19.
The adequate protection and sustainable management of a tropical rain forest requires a good knowledge of its biodiversity. Although considerable parts of Guyana's North-West District have been allocated as logging concessions, little has been published on the forest types present in this region. The present paper reviews the floristic composition, vegetation structure, and diversity of well-drained mixed and secondary forests in northwest Guyana. Trees, shrubs, lianas, herbs and hemi-epiphytes were inventoried in four hectare plots: two in primary forests, one in a 20-year-old secondary forest and one in a 60-year-old secondary forest. The primary forests largely corresponded with the Eschweilera–Licania association described by Fanshawe, although there were substantial variations in the floristic composition and densities of dominant species. The late-succession forest contained the highest number species and was not yet dominated by Lecythidaceae and Chrysobalanaceae. There is a need for updating the existing vegetation maps of northwest Guyana, as they were based on limited information. Large-scale forest inventories may provide a fair indication of species dominance and forest composition, but do not give a reliable insight in floristic diversity. Although previous reports predicted a general low diversity for the North-West District, the forests plots of this research were among the most diverse studied in Guyana so far. These results will hopefully influence the planning of protected areas in Guyana.  相似文献   

20.
Forest litterfall is pivotal for biogeochemical cycles and for assessing the impacts of perturbations on ecosystems. Typhoon occurrence is the primary mechanism for producing litterfall; Taiwan is situated in one of the most frequently disturbed regions. However, no typhoons were recorded in 2018, only occurring three times since 1911. This rare occasion, along with the regular (2017) and extreme typhoon (2016) years, provides an opportunity to investigate the responses of typhoon-prone forest ecosystems to a future climate scenario: Elevated temperatures amplify the intensity but reduce the frequency of typhoons. We compared three years (2016–2018) of summer typhoon season (July–October) mean monthly litterfall (MML) in the subtropical montane cloud forests of northeastern Taiwan, and investigated the relationships between MML/typhoon-induced MML (ΔMML) and 17 biophysical, bioclimatic and topographic attributes. More MML was produced in 2016, caused by strong winds and heavy rainfall. However, there was no statistical difference between 2017 and 2018 since forests may also produce substantial amounts of litterfall in summer without typhoons. The relationship between ΔMML and 17 variables was relatively insensitive to typhoon severity. Variables associated with succession and forest management were crucial for modeling MML in the presence of typhoons, but none of them were pivotal for MML without typhoons. The mean air temperature and elevation (related to forest productivity) were crucial for MML without typhoons; surface curvature may form shelters to prevent extreme typhoon with reduced MML. These outcomes may shed light on future ecosystem dynamics in typhoon-prone forests under a changing climate. Abstract in Mandarin is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号