首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
研究产电微生物胞外电子传递过程和机制,发现与产电效率相关的关键基因、通路和代谢物,是微生物燃料电池研究中的关键技术。为了发现在胞外电子传递过程中起到关键作用的基因以及通路,首先利用比较基因组学的方法,以模式微生物大肠杆菌和同属希瓦氏菌的其他菌株为参考,构建了Shewanella.onedensis MR-1的全基因组基因转录调控网络,大大扩展了目前已知的基因调控关系。然后以此网络为基础,结合基于蛋白质相互作用分析得到的胞外电子传递通路,构建了与胞外电子传递直接传递密切相关的细胞色素C编码基因及其相关调控基因构成的子网络,结合全基因组基因表达数据,研究了特异性条件下胞外电子传递的可能通路和基因调控过程。  相似文献   

6.
7.
8.
9.
10.
11.
Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty- four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.  相似文献   

12.
13.
14.
15.
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3ʹ-5ʹ) cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.  相似文献   

16.
17.
18.
19.
Intrinsic disorder in yeast transcriptional regulatory network   总被引:2,自引:0,他引:2  
Singh GP  Dash D 《Proteins》2007,68(3):602-605
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号