首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2cycl, an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2cycl and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure–activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry.  相似文献   

2.
Progressive multifocal leukoencephalopathy (PML) is a fatal disease with limited treatment options, both clinically and in the research pipeline. Potential therapies would target and neutralize its etiologic agent, JC polyomavirus (JCPyV). The innate immune response to JCPyV infection has not been studied, and little is known about the initial host response to polyomavirus infection. This study examined the ability of a human alpha defensin, HD5, to neutralize JCPyV infection in human fetal glial cells. We show that HD5, by binding to the virion, blocks infection. The JCPyV-HD5 complexes bind to and enter host cells but are reduced in their ability to reach the endoplasmic reticulum (ER), where virions are normally uncoated. Furthermore, HD5 binding to the virion stabilizes the capsid and prevents genome release. Our results show that HD5 neutralizes JCPyV infection at an early postentry step in the viral life cycle by stabilizing the viral capsid and disrupting JCPyV trafficking. This study provides a naturally occurring platform for developing antivirals to treat PML and also expands on the known capabilities of human defensins.  相似文献   

3.
The human JC polyomavirus (JCPyV) causes the rapidly progressing demyelinating disease progressive multifocal leukoencephalopathy (PML). The disease occurs most often in individuals with AIDS but also occurs in individuals receiving immunomodulatory therapies for immune-related diseases such as multiple sclerosis. JCPyV infection of host cells requires the pentasaccharide lactoseries tetrasaccharide c (LSTc) and the serotonin receptor 5-hydroxytryptamine (5-HT) receptor 5-HT2AR. While LSTc is involved in the initial attachment of virus to cells via interactions with VP1, the mechanism by which 5-HT2AR contributes to infection is not clear. To further define the roles of serotonin receptors in infection, HEK293A cells, which are poorly permissive to JCPyV, were transfected with 14 different isoforms of serotonin receptor. Only 5-HT2 receptors were found to support infection by JCPyV. None of the other 11 isoforms of serotonin receptor supported JCPyV infection. Expression of 5-HT2 receptors did not increase binding of JCPyV to cells, but this was not unexpected, given that the cells uniformly expressed the major attachment receptor, LSTc. Infection of these cells remained sensitive to inhibition with soluble LSTc, confirming that LSTc recognition is required for JCPyV infection. Virus internalization into HEK293A cells was significantly and specifically enhanced when 5HT2 receptors were expressed. Taken together, these data confirm that the carbohydrate LSTc is the attachment receptor for JCPyV and that the type 2 serotonin receptors contribute to JCPyV infection by facilitating entry.  相似文献   

4.
JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system, in immunocompromised patients. Because no drugs have been approved for treating PML, many antiviral agents are currently being investigated for this purpose. The inhibitory effects of the topoisomerase I inhibitors topotecan and β‐lapachone were assessed by investigating viral replication, propagation and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using the human neuroblastoma cell line IMR‐32 transfected with the JCPyV plasmid and RT‐ PCR combined with Dpn I treatment. Dpn I digests the input plasmid DNA containing methylated adenosine, but not newly replicated JCPyV DNA, in IMR‐32 cells. It was found that JCPyV replicates less in IMR‐32 cells treated with topotecan or β‐lapachone than in untreated cells. Moreover, drug treatment of JCI cells, which are IMR‐32 cells persistently infected with JCPyV, led to a reduction in the amount of JCPyV DNA and population of VP1‐positive cells. These results demonstrate that topotecan and β‐lapachone affects JCPyV propagation in human neuroblastoma cell lines, suggesting that topotecan and β‐lapachone could potentially be used to treat PML.  相似文献   

5.
Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.  相似文献   

6.
The flotillin proteins are localized in lipid domains at the plasma membrane as well as in intracellular compartments. In the present study, we examined the importance of flotillin-1 and flotillin-2 for the uptake and transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin and we investigated whether toxin binding and uptake were associated with flotillin relocalization. We observed a toxin-induced redistribution of the flotillins, which seemed to be regulated in a p38-dependent manner. Our experiments provide no evidence for a changed endocytic uptake of Stx or ricin in cells silenced for flotillin-1 or -2. However, the Golgi-dependent sulfation of both toxins was significantly reduced in flotillin knockdown cells. Interestingly, when the transport of ricin to the ER was investigated, we obtained an increased mannosylation of ricin in flotillin-1 and flotillin-2 knockdown cells. The toxicity of both toxins was twofold increased in flotillin-depleted cells. Since BFA (Brefeldin A) inhibits the toxicity even in flotillin knockdown cells, the retrograde toxin transport is apparently still Golgi-dependent. Thus, flotillin proteins regulate and facilitate the retrograde transport of Stx and ricin.  相似文献   

7.
Studies of RII alpha-deficient B lymphoid cells and stable transfectants expressing the type II alpha regulatory subunit (RII alpha) of cAMP-dependent protein kinase (PKA), which is targeted to the Golgi-centrosomal area, reveal that the presence of a Golgi-associated pool of PKA type II alpha mediates a change in intracellular transport of the plant toxin ricin. The transport of ricin from endosomes to the Golgi apparatus, measured as sulfation of a modified ricin (ricin sulf-1), increased in RII alpha-expressing cells when PKA was activated. However, not only endosome-to-Golgi transport, but also retrograde ricin transport to the endoplasmic reticulum (ER), measured as sulfation and N-glycosylation of another modified ricin (ricin sulf-2), seemed to be increased in cells expressing RII alpha in the presence of a cAMP analog, 8-(4-chlorophenylthio)-cAMP. Thus, PKA type II alpha seems to be involved in both endosome-to-Golgi and Golgi-to-ER transport. Because ricin, after being retrogradely transported to the ER, is translocated to the cytosol, where it inhibits protein synthesis, we also investigated the influence of RII alpha expression on ricin toxicity. In agreement with the other data obtained, 8-(4-chlorophenylthio)-cAMP and RII alpha were found to sensitize cells to ricin, indicating an increased transport of ricin to the cytosol. In conclusion, our results demonstrate that transport of ricin from endosomes to the Golgi apparatus and further to the ER is regulated by PKA type II alpha isozyme.  相似文献   

8.
JC polyomavirus (JCPyV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system in immunocompromised patients. Archetype JCPyV circulates in the human population. There have been several reports of archetype JCPyV replication in cultured cells, in which propagation was not enough to produce high titers of archetype JCPyV. In this study, we carried out cultivation of the transfected cells with archetype JCPyV DNA MY for more than 2 months to establish COS‐7 cells (designated COS‐JC cells) persistently producing archetype JCPyV. Moreover, JCPyV derived from COS‐JC cells was characterized by analyzing the viral propagation, size of the viral genome, amount of viral DNA, production of viral protein, and structure of the non‐coding control region (NCCR). Southern blotting using a digoxigenin‐labeled JCPyV probe showed two different sizes of the JCPyV genome in COS‐JC cells. For molecular cloning, four of five clones showed a decrease in the size of complete JCPyV genome. Especially, clone No. 10 was generated the large deletion within the Large T antigen. On the other hand, the archetype structure of the NCCR was maintained in COS‐JC cells, although a few point mutations occurred. Quantitative PCR analysis of viral DNA in COS‐JC cells indicated that a high copy number of archetype JCPyV DNA was replicated in COS‐JC cells. These findings suggest that COS‐JC cells could efficiently propagate archetype JCPyV MY and offer a useful tool to study persistent infection of archetype JCPyV in a kidney‐derived system.
  相似文献   

9.
Triple-negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of receptor tyrosine kinase ErbB-2/HER2. Due to TNBC heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive. We demonstrated that ErbB-2 is localized in the nucleus (NErbB-2) of TNBC cells and primary tumors, from where it drives growth. We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c). Here, we revealed that the inhibitors of the retrograde transport Retro-2 and its cyclic derivative Retro-2.1 evict both WTErbB-2 and ErbB-2c from the nucleus of BC cells and tumors. Using BC cells from several molecular subtypes, as well as normal breast cells, we demonstrated that Retro-2 specifically blocks proliferation of BC cells expressing NErbB-2. Importantly, Retro-2 eviction of both ErbB-2 isoforms from the nucleus resulted in a striking growth abrogation in multiple TNBC preclinical models, including tumor explants and xenografts. Our mechanistic studies in TNBC cells revealed that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and the plasma membrane, and of ErbB-2c at the Golgi, shedding new light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport, and on the biology of ErbB-2 splicing variants. In addition, we revealed that the presence of a functional signal peptide and a nuclear export signal (NES), both located at the N-terminus of WTErbB-2, and absent in ErbB-2c, accounts for the differential subcellular distribution of ErbB-2 isoforms upon Retro-2 treatment. Our present discoveries provide evidence for the rational repurposing of Retro-2 as a novel therapeutic agent for TNBC.Subject terms: Breast cancer, Protein translocation, Oncogenes, Nuclear transport, Targeted therapies  相似文献   

10.
JC polyomavirus (JCPyV) is the causative agent of the demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML), which occurs in immunocompromised patients. Moreover, patients treated with natalizumab for multiple sclerosis or Crohn disease can develop PML, which is then termed natalizumab‐related PML. Because few drugs are currently available for treating PML, many antiviral agents are being investigated. It has been demonstrated that the topoisomerase I inhibitors topotecan and β‐lapachone have inhibitory effects on JCPyV replication in IMR‐32 cells. However, both of these drugs have marginal inhibitory effects on virus propagation in JC1 cells according to RT‐PCR analysis. In the present study, the inhibitory effect of another topoisomerase I inhibitor, 7‐ethy‐10‐[4‐(1‐piperidino)‐1‐piperidino] carbonyloxy camptothecin (CPT11), was assessed by investigating viral replication, propagation, and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using real‐time PCR combined with Dpn I treatment in IMR‐32 cells transfected with JCPyV DNA. It was found that JCPyV replicates less in IMR‐32 cells treated with CPT11 than in untreated cells. Moreover, CPT11 treatment of JCI cells persistently infected with JCPyV led to a dose‐dependent reduction in JCPyV DNA and VP1 production. Additionally, the inhibitory effect of CPT11 was found to be stronger than those of topotecan and β‐lapachone. These findings suggest that CPT11 may be a potential anti‐JCPyV agent that could be used to treat PML.
  相似文献   

11.
Recently, we found that JC polyomavirus (JCPyV) associated with progressive multifocal leukoencephalopathy (PML) frequently undergoes amino acid substitutions (designated VP1 loop mutations) in the outer loops of the major capsid protein, VP1. To further characterize the mutations, we analyzed the VP1 region of the JCPyV genome in brain-tissue or cerebrospinal fluid samples from 20 PML patients. VP1 loop mutations occurred far more frequently than silent mutations. Polymorphic residues were essentially restricted to three positions (55, 60, and 66) within the BC loop, one (123) within the DE loop, and three (265, 267, and 269) within the HI loop. The mutations at most polymorphic residues showed a trend toward a change to specific amino acids. Finally, we presented evidence that the VP1 loop mutations were associated with the progression of PML. These findings should form the basis for elucidating the biological significance of the VP1 loop mutations.  相似文献   

12.
Here we demonstrate that ricin is able to interact with the molecular chaperone calreticulin both in vitro and in vivo. The interaction occurred with ricin holotoxin, but not with free ricin A chain; and it was prevented in the presence of lactose, suggesting that it was mediated by the lectin activity of the ricin B chain. This lectin is galactose-specific, and metabolic labeling with [(3)H]galactose or treating galactose oxidase-modified calreticulin with sodium [(3)H]borohydride indicated that Vero cell calreticulin possesses a terminally galactosylated oligosaccharide. Brefeldin A treatment indicated that the intracellular interaction occurred initially in a post-Golgi stack compartment, possibly the trans-Golgi network, whereas the reductive separation of ricin subunits occurred in an earlier part of the secretory pathway, most probably the endoplasmic reticulum (ER). Intoxicating Vero cells with ricin whose A chain had been modified to include either a tyrosine sulfation site or the sulfation site plus available N-glycosylation sites, in the presence of Na(2)35SO(4), confirmed that calreticulin interacted with endocytosed ricin that had already undergone retrograde transport to both the Golgi and the ER. Although we cannot exclude the possibility that the interaction between ricin and calreticulin is an indirect one, the data presented are consistent with the idea that calreticulin may function as a recycling carrier for retrograde transport of ricin from the Golgi to the ER.  相似文献   

13.
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca2+-calmodulin. In single channel measurements, the open Sec61 complex is Ca2+ permeable. It can be closed not only by interaction with BiP or Ca2+-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca2+ leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A.  相似文献   

14.
Ricin acts by translocating to the cytosol the enzymatically active toxin A-chain, which inactivates ribosomes. Retrograde intracellular transport and translocation of ricin was studied under conditions that alter the sensitivity of cells to the toxin. For this purpose tyrosine sulfation of mutant A-chain in the Golgi apparatus, glycosylation in the endoplasmic reticulum (ER) and appearance of A-chain in the cytosolic fraction was monitored. Introduction of an ER retrieval signal, a C-terminal KDEL sequence, into the A-chain increased the toxicity and resulted in more efficient glycosylation, indicating enhanced transport from Golgi to ER. Calcium depletion inhibited neither sulfation nor glycosylation but inhibited translocation and toxicity, suggesting that the toxin is translocated to the cytosol by the pathway used by misfolded proteins that are targeted to the proteasomes for degradation. Slightly acidified medium had a similar effect. The proteasome inhibitor, lactacystin, sensitized cells to ricin and increased the amount of ricin A-chain in the cytosol. Anti-Sec61alpha precipitated sulfated and glycosylated ricin A-chain, suggesting that retrograde toxin translocation involves Sec61p. The data indicate that retrograde translocation across the ER membrane is required for intoxication.  相似文献   

15.
In the present study we demonstrate that ricin, apparently without passing through the Golgi apparatus, reaches the endoplasmic reticulum (ER) and intoxicates cells in which the Golgi apparatus has been vesiculated by depletion of epsilon-COP, a subunit of COPI. LdlF cells contain a temperature-sensitive mutation in epsilon-COP. At the nonpermissive temperature epsilon-COP is degraded, and the Golgi apparatus undergoes a morphological change. To study ricin transport in these cells we used ricin sulf-2, a modified ricin molecule containing glycosylation and sulfation sites. Measurements of the incorporation of radioactive mannose into ricin sulf-2 showed that ricin reached the ER in cells depleted of epsilon-COP. Importantly, by investigating the glycosylation of ricin sulf-2 that was modified with radioactive sulfate in the trans-Golgi network, it was demonstrated that transport of ricin to the ER via the Golgi apparatus was severely inhibited. Moreover, we found that ricin was able to intoxicate ldlF cells depleted of epsilon-COP in the presence of brefeldin A. In contrast, control cells were completely protected against ricin by brefeldin A. In conclusion, our results suggest that in ldlF cells depleted of epsilon-COP ricin might be transported to the ER by an induced brefeldin A-resistant pathway that circumvents the Golgi apparatus.  相似文献   

16.
Establishment of a chronic infection is a key event in virus-mediated carcinogenesis. Several cancer-associated, double-stranded DNA (dsDNA) viruses act via their oncoproteins to downregulate Toll-like receptor 9 (TLR9), a key receptor in the host innate immune response that senses viral or bacterial dsDNA. A novel oncogenic virus, Merkel cell polyomavirus (MCPyV), has been recently identified that causes up to 80% of Merkel cell carcinomas (MCCs). However, it is not yet known whether this oncogenic virus also disrupts immune-related pathways. We find that MCPyV large T antigen (LT) expression downregulates TLR9 expression in epithelial and MCC-derived cells. Accordingly, silencing of LT expression results in upregulation of mRNA TLR9 levels. In addition, small T antigen (sT) also appears to inhibit TLR9 expression, since inhibition of its expression also resulted in an increase of TLR9 mRNA levels. LT inhibits TLR9 expression by decreasing the mRNA levels of the C/EBPβ transactivator, a positive regulator of the TLR9 promoter. Chromatin immunoprecipitation reveals that C/EBPβ binding at a C/EBPβ response element (RE) in the TLR9 promoter is strongly inhibited by expression of MCPyV early genes and that mutation of the C/EBP RE prevents MCPyV downregulation of TLR9. A survey of BK polyomavirus (BKPyV), JC polyomavirus (JCPyV), KI polyomavirus (KIPyV), MCPyV, simian virus 40 (SV40), and WU polyomavirus (WUPyV) early genes revealed that only BKPyV and MCPyV are potent inhibitors of TLR9 gene expression. MCPyV LT targeting of C/EBP transactivators is likely to play an important role in viral persistence and potentially inhibit host cell immune responses during MCPyV tumorigenesis.  相似文献   

17.
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca2+-calmodulin. In single channel measurements, the open Sec61 complex is Ca2+ permeable. It can be closed not only by interaction with BiP or Ca2+-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca2+ leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A.  相似文献   

18.
Pathways followed by ricin and Shiga toxin into cells   总被引:21,自引:5,他引:16  
The plant toxin ricin and the bacterial toxin Shiga toxin belong to a group of protein toxins that inhibit protein synthesis in cells enzymatically after entry into the cytosol. Ricin and Shiga toxin, which both have an enzymatically active moiety that inactivates ribosomes and a moiety that binds to cell surface receptors, enter the cytosol after binding to the cell surface, endocytosis by different mechanisms, and retrograde transport to the Golgi apparatus and the endoplasmic reticulum (ER). The toxins can be used to investigate the various transport steps involved, both the endocytic mechanisms as well as pathways for retrograde transport to the ER. Recent studies show that not only do several endocytic mechanisms exist in the same cell, but they are not equally sensitive to removal of cholesterol. New data have revealed that there is also more than one pathway leading from endosomes to the Golgi apparatus and retrogradely from the Golgi to the ER. Trafficking of protein toxins along these pathways will be discussed in the present article.  相似文献   

19.
The plant toxin ricin binds to both glycosphingolipids and glycoproteins with terminal galactose and is transported to the Golgi apparatus in a cholesterol-dependent manner. To explore the question of whether glycosphingolipid binding of ricin or glycosphingolipid synthesis is essential for transport of ricin from the plasma membrane to the Golgi apparatus, retrogradely to the endoplasmic reticulum or for translocation of the toxin to the cytosol, we have investigated the effect of ricin and the intracellular transport of this toxin in a glycosphingolipid-deficient mouse melanoma cell line (GM95), in the same cell line transfected with ceramide glucosyltransferase to restore glycosphingolipid synthesis (GM95-CGlcT-KKVK) and in the parental cell line (MEB4). Ricin transport to the Golgi apparatus was monitored by quantifying sulfation of a modified ricin molecule, and toxicity was studied by measuring protein synthesis. The data reveal that ricin is transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum and translocated to the cytosol equally well and apparently at the same rate in cells with and without glycosphingolipids. Importantly cholesterol depletion reduced endosome to Golgi transport of ricin even in cells without glycosphingolipids, demonstrating that cholesterol is required for Golgi transport of ricin bound to glycoproteins. The rate of retrograde transport of ricin was increased strongly by monensin and the lag time for intoxication was reduced both in cells with and in those without glycosphingolipids. In conclusion, neither glycosphingolipid synthesis nor binding of ricin to glycosphingolipids is essential for cholesterol-dependent retrograde transport of ricin. Binding of ricin to glycoproteins is sufficient for all transport steps required for ricin intoxication.  相似文献   

20.
Conflicting prevalence of newly identified KI (KIPyV), WU (WUPyV) and Merkel Cell Carcinoma (MCPyV) polyomaviruses have been reported in progressive multifocal leukoencephalopathy (PML) patient samples, ranging from 0 to 14.3%. We analyzed the prevalence of these polyomaviruses in cerebrospinal fluid (CSF), peripheral blood mononuclear cells (PBMC), and bone marrow samples from PML patients, immunosuppressed individuals with or without HIV, and multiple sclerosis (MS) patients. Distinct PCR tests for KIPyV, WUPyV and MCPyV DNA performed in two independent laboratories detected low levels of MCPyV DNA only in 1/269 samples. The infrequent detections of these viruses in multiple samples from immunosuppressed individuals including those with PML suggest that their reactivation mechanisms may be different from that of JC polyomavirus (JCPyV) and that they do not play a role in the pathogenesis of PML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号