首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and protein-oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12-CAPRI37 and CASP13-CAPRI46 joint rounds, which were described and evaluated elsewhere. Focusing on the purely CAPRI targets of this edition (rounds 38-45), we have participated in all 17 assessed targets (considering heteromeric and homomeric interfaces in T125 as two separate targets) both as predictors and as scorers, by using integrative modeling based on our docking and scoring approaches: pyDock, IRaPPA, and LightDock. In the protein-protein and protein-peptide targets, we have also participated with our webserver (pyDockWeb). On these 17 CAPRI targets, we submitted acceptable models (or better) within our top 10 models for 10 targets as predictors, 13 targets as scorers, and 4 targets as servers. In summary, our participation in this CAPRI edition confirmed the capabilities of pyDock for the scoring of docking models, increasingly used within the context of integrative modeling of protein interactions and multimeric assemblies.  相似文献   

2.
    
Computational structural prediction of macromolecular interactions is a fundamental tool toward the global understanding of cellular processes. The Critical Assessment of PRediction of Interactions (CAPRI) community-wide experiment provides excellent opportunities for blind testing computational docking methods and includes original targets, thus widening the range of docking applications. Our participation in CAPRI rounds 38 to 45 enabled us to expand the way we include evolutionary information in structural predictions beyond our standard free docking InterEvDock pipeline. InterEvDock integrates a coarse-grained potential that accounts for interface coevolution based on joint multiple sequence alignments of two protein partners (co-alignments). However, even though such co-alignments could be built for none of the CAPRI targets in rounds 38 to 45, including host-pathogen and protein-oligosaccharide complexes and a redesigned interface, we identified multiple strategies that can be used to incorporate evolutionary constraints, which helped us to identify the most likely macromolecular binding modes. These strategies include template-based modeling where only local adjustments should be applied when query-template sequence identity is above 30% and larger perturbations are needed below this threshold; covariation-based structure prediction for individual protein partners; and the identification of evolutionarily conserved and structurally recurrent anchoring interface motifs. Overall, we submitted correct predictions among the top 5 models for 12 out of 19 interface challenges, including four High- and five Medium-quality predictions. Our top 20 models included correct predictions for three out of the five targets we missed in the top 5, including two targets for which misleading biological data led us to downgrade correct free docking models.  相似文献   

3.
    
We report the performance of the protein docking prediction pipeline of our group and the results for Critical Assessment of Prediction of Interactions (CAPRI) rounds 38-46. The pipeline integrates programs developed in our group as well as other existing scoring functions. The core of the pipeline is the LZerD protein-protein docking algorithm. If templates of the target complex are not found in PDB, the first step of our docking prediction pipeline is to run LZerD for a query protein pair. Meanwhile, in the case of human group prediction, we survey the literature to find information that can guide the modeling, such as protein-protein interface information. In addition to any literature information and binding residue prediction, generated docking decoys were selected by a rank aggregation of statistical scoring functions. The top 10 decoys were relaxed by a short molecular dynamics simulation before submission to remove atom clashes and improve side-chain conformations. In these CAPRI rounds, our group, particularly the LZerD server, showed robust performance. On the other hand, there are failed cases where some other groups were successful. To understand weaknesses of our pipeline, we analyzed sources of errors for failed targets. Since we noted that structure refinement is a step that needs improvement, we newly performed a comparative study of several refinement approaches. Finally, we show several examples that illustrate successful and unsuccessful cases by our group.  相似文献   

4.
    
We participated in CARPI rounds 38-45 both as a server predictor and a human predictor. These CAPRI rounds provided excellent opportunities for testing prediction methods for three classes of protein interactions, that is, protein-protein, protein-peptide, and protein-oligosaccharide interactions. Both template-based methods (GalaxyTBM for monomer protein, GalaxyHomomer for homo-oligomer protein, GalaxyPepDock for protein-peptide complex) and ab initio docking methods (GalaxyTongDock and GalaxyPPDock for protein oligomer, GalaxyPepDock-ab-initio for protein-peptide complex, GalaxyDock2 and Galaxy7TM for protein-oligosaccharide complex) have been tested. Template-based methods depend heavily on the availability of proper templates and template-target similarity, and template-target difference is responsible for inaccuracy of template-based models. Inaccurate template-based models could be improved by our structure refinement and loop modeling methods based on physics-based energy optimization (GalaxyRefineComplex and GalaxyLoop) for several CAPRI targets. Current ab initio docking methods require accurate protein structures as input. Small conformational changes from input structure could be accounted for by our docking methods, producing one of the best models for several CAPRI targets. However, predicting large conformational changes involving protein backbone is still challenging, and full exploration of physics-based methods for such problems is still to come.  相似文献   

5.
    
Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template-based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template-based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template-based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use at https://tbm.cluspro.org , is demonstrated by predicting the protein-protein targets of rounds 38 to 45 of CAPRI.  相似文献   

6.
    
A holistic protein-protein molecular docking approach, HoDock, was established, composed of such steps as binding site prediction, initial complex structure sampling, refined complex structure sampling, structure clustering, scoring and final structure selection. This article explains the detailed steps and applications for CAPRI Target 39. The CAPRI result showed that three predicted binding site residues, A191HIS, B512ARG and B531ARG, were correct, and there were five submitted structures with a high fraction of correct receptor-ligand interface residues, indicating that this docking approach may improve prediction accuracy for protein-protein complex structures.  相似文献   

7.
    
Protein structure docking is the process in which the quaternary structure of a protein complex is predicted from individual tertiary structures of the protein subunits. Protein docking is typically performed in two main steps. The subunits are first docked while keeping them rigid to form the complex, which is then followed by structure refinement. Structure refinement is crucial for a practical use of computational protein docking models, as it is aimed for correcting conformations of interacting residues and atoms at the interface. Here, we benchmarked the performance of eight existing protein structure refinement methods in refinement of protein complex models. We show that the fraction of native contacts between subunits is by far the most straightforward metric to improve. However, backbone dependent metrics, based on the Root Mean Square Deviation proved more difficult to improve via refinement.  相似文献   

8.
    
Protein-protein docking plays an important role in the computational prediction of the complex structure between two proteins. For years, a variety of docking algorithms have been developed, as witnessed by the critical assessment of prediction interactions (CAPRI) experiments. However, despite their successes, many docking algorithms often require a series of manual operations like modeling structures from sequences, incorporating biological information, and selecting final models. The difficulties in these manual steps have significantly limited the applications of protein-protein docking, as most of the users in the community are nonexperts in docking. Therefore, automated docking like a web server, which can give a comparable performance to human docking protocol, is pressingly needed. As such, we have participated in the blind CAPRI experiments for Rounds 38-45 and CASP13-CAPRI challenge for Round 46 with both our HDOCK automated docking web server and human docking protocol. It was shown that our HDOCK server achieved an “acceptable” or higher CAPRI-rated model in the top 10 submitted predictions for 65.5% and 59.1% of the targets in the docking experiments of CAPRI and CASP13-CAPRI, respectively, which are comparable to 66.7% and 54.5% for human docking protocol. Similar trends can also be observed in the scoring experiments. These results validated our HDOCK server as an efficient automated docking protocol for nonexpert users. Challenges and opportunities of automated docking are also discussed.  相似文献   

9.
Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near-native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse-grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide-protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide-protein interactions.  相似文献   

10.
    
Gao M  Skolnick J 《Proteins》2011,79(5):1623-1634
With the development of many computational methods that predict the structural models of protein-protein complexes, there is a pressing need to benchmark their performance. As was the case for protein monomers, assessing the quality of models of protein complexes is not straightforward. An effective scoring scheme should be able to detect substructure similarity and estimate its statistical significance. Here, we focus on characterizing the similarity of the interfaces of the complex and introduce two scoring functions. The first, the interfacial Template Modeling score (iTM-score), measures the geometric distance between the interfaces, while the second, the Interface Similarity score (IS-score), evaluates their residue-residue contact similarity in addition to their geometric similarity. We first demonstrate that the IS-score is more suitable for assessing docking models than the iTM-score. The IS-score is then validated in a large-scale benchmark test on 1562 dimeric complexes. Finally, the scoring function is applied to evaluate docking models submitted to the Critical Assessment of Prediction of Interactions (CAPRI) experiments. While the results according to the new scoring scheme are generally consistent with the original CAPRI assessment, the IS-score identifies models whose significance was previously underestimated.  相似文献   

11.
    
Protein docking algorithms aim to predict the 3D structure of a protein complex from the structures of its separated components. In the past, most docking algorithms focused on docking pairs of proteins to form dimeric complexes. However, attention is now turning towards the more difficult problem of using docking methods to predict the structures of multicomponent complexes. In both cases, however, the constituent proteins often change conformation upon complex formation, and this can cause many algorithms to fail to detect near-native binding orientations due to the high number of atomic steric clashes in the list of candidate solutions. An increasingly popular way to retain more near-native orientations is to define one or more restraints that serve to modulate or override the effect of steric clashes. Here, we present an updated version of our “EROS-DOCK” docking algorithm which has been extended to dock arbitrary dimeric and trimeric complexes, and to allow the user to define residue-residue or atom-atom interaction restraints. Our results show that using even just one residue-residue restraint in each interaction interface is sufficient to increase the number of cases with acceptable solutions within the top 10 from 51 to 121 out of 173 pairwise docking cases, and to successfully dock 8 out of 11 trimeric complexes.  相似文献   

12.
计算方法在蛋白质相互作用研究中的应用   总被引:2,自引:1,他引:2  
计算方法在蛋白质相互作用研究的各个阶段扮演了一个重要的角色。对此,作者将从以下几个方面对计算方法在蛋白质相互作用及相互作用网络研究中的应用做一个概述:蛋白质相互作用数据库及其发展;数据挖掘方法在蛋白质相互作用数据收集和整合中的应用;高通量方法实验结果的验证;根据蛋白质相互作用网络预测和推断未知蛋白质的功能;蛋白质相互作用的预测。  相似文献   

13.
    
Proteins frequently interact with each other, and the knowledge of structures of the corresponding protein complexes is necessary to understand how they function. Computational methods are increasingly used to provide structural models of protein complexes. Not surprisingly, community-wide Critical Assessment of protein Structure Prediction (CASP) experiments have recently started monitoring the progress in this research area. We participated in CASP13 with the aim to evaluate our current capabilities in modeling of protein complexes and to gain a better understanding of factors that exert the largest impact on these capabilities. To model protein complexes in CASP13, we applied template-based modeling, free docking and hybrid techniques that enabled us to generate models of the topmost quality for 27 of 42 multimers. If templates for protein complexes could be identified, we modeled the structures with reasonable accuracy by straightforward homology modeling. If only partial templates were available, it was nevertheless possible to predict the interaction interfaces correctly or to generate acceptable models for protein complexes by combining template-based modeling with docking. If no templates were available, we used rigid-body docking with limited success. However, in some free docking models, despite the incorrect subunit orientation and missed interface contacts, the approximate location of protein binding sites was identified correctly. Apparently, our overall performance in docking was limited by the quality of monomer models and by the imperfection of scoring methods. The impact of human intervention on our results in modeling of protein complexes was significant indicating the need for improvements of automatic methods.  相似文献   

14.
    
Chen H  Zhou HX 《Proteins》2005,61(1):21-35
The number of structures of protein-protein complexes deposited to the Protein Data Bank is growing rapidly. These structures embed important information for predicting structures of new protein complexes. This motivated us to develop the PPISP method for predicting interface residues in protein-protein complexes. In PPISP, sequence profiles and solvent accessibility of spatially neighboring surface residues were used as input to a neural network. The network was trained on native interface residues collected from the Protein Data Bank. The prediction accuracy at the time was 70% with 47% coverage of native interface residues. Now we have extensively improved PPISP. The training set now consisted of 1156 nonhomologous protein chains. Test on a set of 100 nonhomologous protein chains showed that the prediction accuracy is now increased to 80% with 51% coverage. To solve the problem of over-prediction and under-prediction associated with individual neural network models, we developed a consensus method that combines predictions from multiple models with different levels of accuracy and coverage. Applied on a benchmark set of 68 proteins for protein-protein docking, the consensus approach outperformed the best individual models by 3-8 percentage points in accuracy. To demonstrate the predictive power of cons-PPISP, eight complex-forming proteins with interfaces characterized by NMR were tested. These proteins are nonhomologous to the training set and have a total of 144 interface residues identified by chemical shift perturbation. cons-PPISP predicted 174 interface residues with 69% accuracy and 47% coverage and promises to complement experimental techniques in characterizing protein-protein interfaces. .  相似文献   

15.
  总被引:1,自引:0,他引:1  
Protein docking procedures carry out the task of predicting the structure of a protein–protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved ‘target’ complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody–antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark , and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10–16. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
基于相互作用的蛋白质功能预测   总被引:1,自引:0,他引:1  
蛋白质功能预测是后基因时代研究的热点问题。基于相互作用的蛋白质功能预测方法目前应用比较广泛,但是当"伙伴蛋白质"(interacting partners)数目k较小时,其预测准确率不高。从蛋白质相互作用网络入手,结合"小世界网络"特性,有效解决了k较小时预测准确率不高的问题。对酵母(Saccharomyces cerevisiae)蛋白质的相互作用网络进行预测,当k≤4时其预测准确率比相同条件下的GO(global optimization)方法有一定提高。实验结果表明:该方法能够有效的应用于伙伴蛋白质数目较小时的蛋白质功能预测。  相似文献   

17.
    
Lee HS  Zhang Y 《Proteins》2012,80(1):93-110
We developed BSP‐SLIM, a new method for ligand–protein blind docking using low‐resolution protein structures. For a given sequence, protein structures are first predicted by I‐TASSER; putative ligand binding sites are transferred from holo‐template structures which are analogous to the I‐TASSER models; ligand–protein docking conformations are then constructed by shape and chemical match of ligand with the negative image of binding pockets. BSP‐SLIM was tested on 71 ligand–protein complexes from the Astex diverse set where the protein structures were predicted by I‐TASSER with an average RMSD 2.92 Å on the binding residues. Using I‐TASSER models, the median ligand RMSD of BSP‐SLIM docking is 3.99 Å which is 5.94 Å lower than that by AutoDock; the median binding‐site error by BSP‐SLIM is 1.77 Å which is 6.23 Å lower than that by AutoDock and 3.43 Å lower than that by LIGSITECSC. Compared to the models using crystal protein structures, the median ligand RMSD by BSP‐SLIM using I‐TASSER models increases by 0.87 Å, while that by AutoDock increases by 8.41 Å; the median binding‐site error by BSP‐SLIM increase by 0.69Å while that by AutoDock and LIGSITECSC increases by 7.31 Å and 1.41 Å, respectively. As case studies, BSP‐SLIM was used in virtual screening for six target proteins, which prioritized actives of 25% and 50% in the top 9.2% and 17% of the library on average, respectively. These results demonstrate the usefulness of the template‐based coarse‐grained algorithms in the low‐resolution ligand–protein docking and drug‐screening. An on‐line BSP‐SLIM server is freely available at http://zhanglab.ccmb.med.umich.edu/BSP‐SLIM . Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Analysing six types of protein-protein interfaces   总被引:6,自引:0,他引:6  
Non-covalent residue side-chain interactions occur in many different types of proteins and facilitate many biological functions. Are these differences manifested in the sequence compositions and/or the residue-residue contact preferences of the interfaces? Previous studies analysed small data sets and gave contradictory answers. Here, we introduced a new data-mining method that yielded the largest high-resolution data set of interactions analysed. We introduced an information theory-based analysis method. On the basis of sequence features, we were able to differentiate six types of protein interfaces, each corresponding to a different functional or structural association between residues. Particularly, we found significant differences in amino acid composition and residue-residue preferences between interactions of residues within the same structural domain and between different domains, between permanent and transient interfaces, and between interactions associating homo-oligomers and hetero-oligomers. The differences between the six types were so substantial that, using amino acid composition alone, we could predict statistically to which of the six types of interfaces a pool of 1000 residues belongs at 63-100% accuracy. All interfaces differed significantly from the background of all residues in SWISS-PROT, from the group of surface residues, and from internal residues that were not involved in non-trivial interactions. Overall, our results suggest that the interface type could be predicted from sequence and that interface-type specific mean-field potentials may be adequate for certain applications.  相似文献   

19.
    
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

20.
    
Structural characterization of protein-protein interactions is essential for our ability to study life processes at the molecular level. Computational modeling of protein complexes (protein docking) is important as the source of their structure and as a way to understand the principles of protein interaction. Rapidly evolving comparative docking approaches utilize target/template similarity metrics, which are often based on the protein structure. Although the structural similarity, generally, yields good performance, other characteristics of the interacting proteins (eg, function, biological process, and localization) may improve the prediction quality, especially in the case of weak target/template structural similarity. For the ranking of a pool of models for each target, we tested scoring functions that quantify similarity of Gene Ontology (GO) terms assigned to target and template proteins in three ontology domains—biological process, molecular function, and cellular component (GO-score). The scoring functions were tested in docking of bound, unbound, and modeled proteins. The results indicate that the combined structural and GO-terms functions improve the scoring, especially in the twilight zone of structural similarity, typical for protein models of limited accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号