首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the advantage of plant clonality in patchy environments, studies focusing on genet demography in relation to spatially heterogeneous environments remain scarce. Regeneration of bamboos in forest understoreys after synchronous die‐off provides an opportunity for assessing how they come to proliferate across heterogeneous light environments. In a Japanese forest, we examined genet demography of a population of Sasa kurilensis over a 7‐year period starting 10 years after die‐off, shortly after which some genets began spreading horizontally by rhizomes. The aboveground biomass was estimated, and genets were discriminated in 9‐m2 plots placed under both canopy gaps and closed canopies. Overall, the results suggest that the survival and spread of more productive genets and the spatial expansion of genets into closed canopies underlie the proliferation of S. kurilensis. Compared to canopy gaps, the recovery rate of biomass was much slower under closed canopies for the first 10 years after the die‐off, but became accelerated during the next 7 years. Genet survival was greater for more productive genets (with greater initial number of culms), and the spaces occupied by genets that died were often colonized afterward by clonal growth of surviving genets. The number of genets decreased under canopy gaps due to greater mortality, but increased under closed canopies where greater number of genets colonized clonally from outside the plots than genets died. The colonizing genets were more productive (having larger culms) than those originally germinated within the plots, and the contribution of colonizing genets to the biomass was greater under closed canopies. Our study emphasizes the importance of investigating genet dynamics over relevant spatiotemporal scales to reveal processes underlying the success of clonal plants in heterogeneous habitats.  相似文献   

2.
Summary Although insect herbivores have many well documented effects on plant performance, there are few studies that assess the impact of above-ground herbivory on below-ground plant growth. For a seven year period in which no large-scale herbivore outbreaks occurred, a broad spectrum insecticide was utilized to suppress herbivorous insects in a natural community dominated by Solidago altissima. Ramet heights, rhizome lengths, rhizome biomass, and the number of daughter rhizomes all were lower in the control plots than in the insecticidetreated plots. These effects should lead to a decrease in the fitness of genets in the control plots relative to the fitness of genets in the insecticide-treated plots. We also found that ramets in the control plots appear to have compensated for herbivory: the ratio of rhizome length to rhizome biomass was greatest in the control plots, which indicates that clones moved farther per unit biomass in these plots than in the insecticide-treated plots. Clonal growth models show that this shift in allocation patterns greatly reduced the magnitude of treatment differences in long-term clonal displacements.Previous work has shown, and this study verified, that clonal growth in S. altissima is well represented by random-walk and diffusion models. Therefore, we used these models to examine possible treatment differences in rates of clonal expansion. Although rhizome lengths were greater in the insecticide-treated plots, results from the models suggest that our treatments had little impact on the short- and long-term displacement of S. altissima ramets from a point of origin. This occurred because S. altissima ramets backtrack often, and thus, treatment differences in net displacements are less pronounced than treatment differences in rhizome lengths.  相似文献   

3.
Guo W  Song YB  Yu FH 《PloS one》2011,6(11):e27998
Spatial heterogeneity in resource supply is common and responses to heterogeneous resource supply have been extensively documented in clonal angiosperms but not in pteridophytes. To test the hypotheses that clonal integration can modify responses of pteridophytes to heterogeneous resource supply and the integration effect is larger at higher patch contrast, we conducted a field experiment with three homogeneous and two heterogeneous light treatments on the rhizomatous, understory fern Diplopterygium glaucum in an evergreen broad-leaved forest in East China. In homogeneous treatments, all D. glaucum ramets in 1.5 m×1.5 m units were subjected to 10, 40 and 100% natural light, respectively. In the heterogeneous treatment of low patch contrast, ramets in the central 0.5 m×0.5 m plots of the units were subjected to 40% natural light and their interconnected ramets in the surrounding area of the units to 100%; in the heterogeneous treatment of high patch contrast, ramets in the central plots were subjected to 10% natural light and those in the surrounding area to 100%. In the homogeneous treatments, biomass and number of living ramets in the central plots decreased and number of dead ramets increased with decreasing light supply. At low contrast heterogeneous light supply did not affect performance or biomass allocation of D. glaucum in the central plots, but at high contrast it increased lamina biomass and number of living ramets older than annual and modified biomass allocation to lamina and rhizome. Thus, clonal integration can affect responses of understory ferns to heterogeneous light supply and ramets in low light patches can be supported by those in high light. The results also suggest that effects of clonal integration depend on the degree of patch contrast and a significant integration effect may be found only under a relatively high patch contrast.  相似文献   

4.
1. To test whether clonal macrophytes can select favourable habitats in heterogeneous environments, clonal fragments of the stoloniferous submerged macrophyte Vallisneria spiralis were subjected to conditions in which light intensity and substratum nutrients were patchily distributed. The allocation of biomass accumulation and ramet production of clones to the different patches was examined. 2. The proportion of both biomass and ramet number of clones allocated to rich patches was significantly higher than in poor patches. The greatest values of both clone and leaf biomass were produced in the heterogeneous light treatment, in which clones originally grew from light‐rich to light‐poor patches, while clones produced the most offspring ramets in the treatments with heterogeneous substratum nutrients. Similarly, root biomass had the highest values in nutrient‐rich patches when clones grew from nutrient‐rich to nutrient‐poor patches. 3. The quality of patches in which parent ramets established significantly influenced the foraging pattern. When previously established in rich patches, a higher proportion of biomass was allocated to rich patches, whereas a higher proportion of ramet number was allocated to rich patches when previously established in poor patches. 4. Results demonstrate that the clonal macrophyte V. spiralis can exhibit foraging in submerged heterogeneous environments: when established under resource‐rich conditions V. spiralis remained in favourable patches, whereas if established in adverse conditions it could escape by allocating more ramets to favourable patches.  相似文献   

5.
We tested the hypotheses that: (i) reproductive Geonoma brevispatha, an understorey clonal palm endemic to South American swamps, is most abundant in more brightly lit microsites but the abundance of juveniles is not responsive to light availability, (ii) the species is restricted to the transitional zones between flooded and well-drained microsites, (iii) if hypotheses (i) and/or (ii) are accepted, the microhabitat specialization they represent should be reflected in the spatial distribution of the individuals at distinct scales. The study was carried out in a swamp forest in south-eastern Brazil. Soil moisture was autocorrelated at distances up to approximately 1m, reflecting a fine-scale microtopographic pattern of flooded pits and channels delimited by drier mounds. The first hypothesis was rejected, but the second hypothesis was accepted. No genets occurred on flooded microsites. A juvenile emergence experiment showed that seeds were unable to develop into juveniles under flooded conditions, but canopy openness did not influence the number of juveniles emerging. The third hypothesis was accepted. Individual genets were randomly distributed at scales corresponding to soil moisture patches, but were aggregated at larger scales. Juvenile genets were positively associated with reproducer genets. Our results indicate that palms may specialize on narrow parts of moisture gradients in swamp forests, and that this specialization can exclude them from even subtly distinct microhabitats.  相似文献   

6.
很多入侵植物具有克隆性,克隆整合对入侵克隆植物生长和繁殖具有重要的贡献。自然界中,植物生长和繁殖所需的各种资源如光照、水分和矿质养分等在空间上分布通常是异质的,但关于异质环境下克隆整合对入侵植物和本土同属植物种间关系影响的研究相对缺乏。通过温室控制实验,将入侵植物南美蟛蜞菊(Wedelia trilobata)和同属本土植物蟛蜞菊(W.chinensis)的分株对单独种植或者混合种植在异质性光照条件下,同时通过保持或者切断分株之间的连接来控制克隆整合效应的有无,研究异质光照环境下克隆整合对南美蟛蜞菊和蟛蜞菊种间关系的影响。克隆整合对南美蟛蜞菊和蟛蜞菊的生长和繁殖都有促进作用,且南美蟛蜞菊比蟛蜞菊从克隆整合中获益更多。与单独种植相比,两者混种对南美蟛蜞菊的叶生物量有显著影响,而对本地种蟛蜞菊的根生物量有显著影响。克隆整合和种间关系对南美蟛蜞菊的总生物量和叶生物量产生了显著的交互作用,而对蟛蜞菊各指标无显著影响。克隆整合状态显著影响了南美蟛蜞菊和蟛蜞菊的种间关系。这些结果表明,异质环境下克隆整合可以改变入侵植物南美蟛蜞菊和本土植物蟛蜞菊的生长性状及种间关系。  相似文献   

7.
Physiological integration may help clonal macrophytes invade or escape from existing communities. No studies have tested the above hypothesis in aquatic plants. In an outdoor pond experiment, we subjected clonal fragments of the submerged macrophyte Vallisneria spiralis L. to heterogeneous environments in which V. spiralis spread from bare habitats towards vegetated habitats occupied by Myriophyllum spicatum L. or V. spiralis spread from vegetated habitats towards bare habitats. V. spiralis stolons between ramets in bare habitats and in vegetated habitats were either intact or severed. We investigated the habitat selection of V. spiralis by examining the allocation of biomass and ramets to heterogeneous habitats during its vegetative spread phase. Results showed that the stolon connection had different effects on the habitat selection of V. spiralis with regard to invasion and escape. When V. spiralis spread from bare to vegetated habitats, in comparison to severing the stolon, the stolon connection eventually facilitated a 49% increase in biomass and a 27% increase in number of ramets allocated to vegetated habitats. However, when V. spiralis spread from vegetated to bare habitats, biomass and ramets allocated to bare habitats were not significantly changed by the stolon connection (only a 5% increase in biomass and a 6% increase in number of ramets). These results indicate that clonal integration facilitated V. spiralis not to escape from but invade into vegetated habitats. The study provides evidence that physiological integration is important for survival and tolerance of ramets in competitively stressful environments and can help clonal macrophytes coexist with other species.  相似文献   

8.
Abstract. The population dynamics of two monocarpic bamboos, Sasa kurilensis and S. tsuboiana, were studied for more than 10 years after establishment following mass flowering. Both species show vigorous rhizomatous vegetative reproduction after growing up to maturity, but horizontal expansion in the seedling stage was much more vigorous in S. tsuboiana than in S. kurilensis. The pattern of changes in culm density in the two species was strikingly similar: culm densities of both species increased until they reached full-density states, after which they decreased in accordance with seedling growth. However, the mode of regulation in culm density was different. S. kurilensis seedlings were composed of only a few culms and scarcely extended their rhizomes during the observation period. Such poor lateral expansion resulted in asymmetric competition as observed in many non-clonal plants, and consequently their culm density decreased as a result of the mortality of genets due to self-thinning. In S. tsuboiana seedlings, the number of culms per genet increased considerably by frequent tillering and sprouting from rhizomes. However, after reaching full density state, the Bud Utility Ratio (BUR), (the proportion of the rhizome nodes with culms to the total number of rhizome nodes), decreased drastically. In this manner, S. tsuboiana regulated culm density intraclonally as is observed in the stable states of many clonal plants. Hence it is important for the understanding of the regeneration process in clonal species to clarify when and how their seedlings extend rhizomes during their growth.  相似文献   

9.
A special type of clonal growth, spread by lateral roots, ishypothesized to be a favourable trait of invasive, opportunistic plant speciesof disturbed habitats. We tested this hypothesis for the invasive forbRorippa austriaca (Brassicaceae). Regenerationfrom root fragments, subsequent vegetative spread and allocation patterns inrelation to varied nutrient supply and intensity and pattern of interspecificcompetition were analyzed in container experiments. Regeneration success fromroot fragments was 100% and clonal spread was rapid but vegetativeperformance was strongly reduced under unfertilized conditions and,particularly, when interspecific competition was present. While the ratio ofabove- to belowground bio-mass did not differ considerably betweentreatments, R. austriaca allocated a high amount ofresources to belowground growth resulting in low aboveground but highbelowground biomass at harvest time relative to the matrix vegetation.Differences in shoot number or biomass between simulated gaps and denselyvegetated quadrants in the containers were (relatively) weak.Reproductive effort was less reduced under low resource levels, and the clonesdid not set seed at all, irrespective of the treatment. Our results show thatclonal growth by lateral roots and plasticity in clonal growth patterns inR. austriaca promote both exploitation of gaps andnutrient-rich microsites and resistance to competitors. Such plasticity,combined with its ability to regenerate from widely-dispersed rootfragments, contribute to the ability of the species to invade and persistwithindisturbed and spatially heterogeneous habitats.  相似文献   

10.
Tolerance to grazing is a plant trait that can be adaptive in systems where plants are subjected to a diversity of herbivore attack types. To test the tolerance ability of the clonal sedge Carex bigelowii, which is food plant to several herbivores in alpine and arctic areas, and the potential fitness costs of this tolerance, replicated units of genets were subjected to three levels of damage throughout three consecutive seasons. The three levels of treatment were no damage, light damage and heavy damage, and the damage was conducted by tearing off all plant material at 3 and 0 cm above-ground respectively. The genets had no tolerance under damage in terms of sexual reproduction. In terms of clonal reproduction the genets showed tolerance under light damage but not under heavy damage. However, no fitness cost was found for this tolerance ability, i.e. genets had higher reproduction and growth under no damage. The average ramet weight had a similar decrease under both a low and high damage treatment. Changed partitioning of biomass between plant parts and reduced concentration of total non-structural carbohydrates (TNC) in storage organs are possible mechanisms for the ability to uphold clonal reproduction in response to damage. There were no significant indications that tolerance ability or its fitness cost differed between genets. Our results suggest that when subjected to heavy damage genets will only reproduce vegetatively. Consequently, it seems C. bigelowii has evolved to allocate resources to the survival of an already successful genet rather than to a potential new genet of unknown success.  相似文献   

11.
Clonal plants have the ability to spread and survive over long periods of time by vegetative growth. For endangered species, the occurrence of clonality can have significant impacts on levels of genetic diversity, population structure, recruitment, and the implementation of appropriate conservation strategies. Here we␣examine clone structure in three populations of Ambrosia pumila (Nutt.) Gray (Asteraceae), a federally endangered clonal species from southern California. Ambrosia pumila is a perennial herbaceous species spreading from a rhizome, and is frequently found in dense patches of several hundred stems in a few square meters. The primary habitat for this species is upper terraces of rivers and drainages in areas that have been heavily impacted by anthropogenic disturbances and changing flood regimes. RAPD markers were employed to document the number and distribution of clones within multiple 0.25 m2 plots from each of three populations. Thirty-one multi-locus genotypes were identified from the 201 stems sampled. The spatial distribution of clones was limited with no genotypes shared between plots or populations. Mean clone size was estimated at 9.10 ramets per genet. Genets in most plots were intermingled, conforming to a guerrilla growth form. The maximum genet spread was 0.59 m suggesting that genets can be larger than the sampled 0.25 m2 plots. Spatial autocorrelation analysis found a lack of spatial genetic structure at short distances and significant structure at large distances within populations. Due to the occurrence of multiple genets within each population, the limited spread of genets, and a localized genetic structure, conservation activities should focus on the maintenance of multiple populations throughout the species range.  相似文献   

12.
During the middle stage of old-field succession, genets of clonal plants vie to take over space from annual and short-lived perennial plants. We studied factors that may influence the relative rates of expansion of Solidago altissima genets in an old-field population attacked by the gall midge Rhopalomyia solidaginis. Genets growing in more clayey soil expanded more slowly, as evidenced by differences in rhizome growth. Edaphic conditions also affected galling frequencies, with genets in more sandy soil having twice as many galls. Gall midges reduced goldenrod stem growth, and stem height was positively correlated with rhizome growth. For a given stem height, galled ramets allocated relatively more biomass to rhizome growth than ungalled ramets. The end result was that galled ramets produced the same number and sizes of rhizomes as ungalled ramets.  相似文献   

13.
Abstract. In late successions of the boreal forest of northern Sweden the evergreen dwarf shrub Empetrum hermaphroditum forms an extensive cover and is believed to spread mainly vegetatively through layering. To analyse the process of population establishment and the relative importance of sexual vs asexual reproduction and the spatial clonal distribution of this species we selected one mainland and two island sites of different post‐fire successional ages (145, 375 and 1720 yr since last fire, respectively). Using 61 polymorphic RAPD markers, we found 96 genotypes in a total of 133 samples. All three populations showed high levels of genetic variation. AMOVA analysis revealed that 33% of the total variation resided among sites, 26% resided among plots within sites and 41% was due to variation within plots. The youngest population had only 14% clonal fraction. In contrast, the oldest population had > 30% clonal fraction and many genets had dimensions of 10–40 m and were intermingled. It appears that E. hermaphroditum establishes by seeds to a larger extent than previously thought and that the clonal spread by layering is rather slow.  相似文献   

14.
Clonal diversity within plant populations is affected by factors that influence genet (clone) survival and seed recruitment, such as resource availability, disturbance, seed dispersal mechanism, propagule predation and the age of the population. Here we studied a population of Potamogeton pectinatus, a pseudo-annual aquatic macrophyte. Within populations reproduction appears to be mainly asexually through subterranean propagules (tubers), while recruitment via seeds is believed to be relatively unimportant. RAPD markers were used to analyse clonal diversity and genetic variation within the population. Ninety-seven genets were identified among 128 samples taken from eight plots. The proportion of distinguishable genets (0.76) and Simpson's diversity index (0.99) exhibited high levels of clonal diversity compared to other clonal plants. According to an analysis of molecular variance (amova) most genetic variation occurred between individuals within plots (93-97%) rather than between plots (8-3%). These results imply that sexual reproduction plays an unexpectedly important role within the population. Nevertheless, autocorrelation statistics revealed a spatial genetic structure resulting from clonal growth. In contrast to genetic variation, clonal diversity was affected by several ecological factors. Water depth and silt content had direct negative effects on clonal diversity. Tuber predation by Bewick's swans had an unexpected indirect negative effect on clonal diversity through reducing the tuber-bank biomass in spring, which on its turn was positively correlated to clonal diversity. The disturbance by swans, therefore, did not enhance seed recruitment and thus clonal diversity; on the contrary, heavily foraged areas are probably more prone to stochastic loss of genets leading to reduced clonal diversity.  相似文献   

15.
For effective management of endangered species it is pivotal to understand why a species is endangered and which key life cycle components are involved in its response to environmental changes. Our objective was to investigate the response of rosettes of the redlisted clonal herb Cirsium dissectum to anthropogenic nutrient enrichment, which threatens its populations, and the consequences of these responses for its population dynamics. We constructed matrix population models with demographic data from three populations and four annual transitions and we decomposed the spatiotemporal variation in projected population growth rates into contributions from life cycle components. These patterns were compared with below-ground rosette dynamics in different fields, and with the below- and above-ground rosette dynamics in a garden experiment with nutrient enrichment and competing grasses. The decomposition analysis revealed that increased clonal rosette formation and decreased rosette survival were driving the spatial variation in the population growth rate. Excavating the below-ground rhizome network revealed a higher rosette turn-over in experimentally fertilized garden plots, which not only resulted in increased plot-level extinction, but also in increased spread of the clonal offspring. This supported the observed trend among field populations: rosette formation trades off with rosette survival. Surviving seedlings were only found in areas where the topsoil had been removed. The endangered C. dissectum is vulnerable when its habitat becomes more productive, because this species does not have the necessary capability to build up biomass. Small-scale disturbances such as created by sod-cutting or trampling cattle are essential for seedling establishment and necessary to render the explorative strategy of rhizomatous clonal spread successful.  相似文献   

16.
If connected ramets are growing in heterogeneous environments, Division of Labour (DoL) among ramets potentially will result in more efficient sharing of resources and an overall benefit to the plants. As a result of DoL, connected ramets growing in a heterogeneous environment might achieve more biomass than ramets growing in a homogeneous environment. DoL has been demonstrated to occur in a few clonal plant species, although most studies simply focussed on biomass allocation, not on actual resource capturing such as water and nutrient consumption. The model system for our study is one in which two connected ramet groups of Schoenoplectus americanus were placed into contrasting environments. In one treatment, the connected ramets grew in heterogeneous environments and in the other treatment, the connected ramets grew in the same (i.e. homogeneous) environment. We manipulated two variables (light and salinity) in the experiment. We hypothesized that ramets growing in a shaded and fresh water condition in a heterogeneous environment would use more water than ramets growing in a similar condition but in a homogeneous environment. We further hypothesized that ramets growing in a light and saline condition in a heterogeneous environment would assimilate less water than ramets growing in a similar condition but in a homogeneous environment. These hypotheses are based on the assumption that ramets in a heterogeneous environment would translocate water from ramets growing in a shaded and fresh water condition to ramets growing in a light and saline water condition. We also hypothesized that ramets growing in heterogeneous environments achieve larger biomass than ramets in homogeneous environments. Ramets grown in light and saline conditions in heterogeneous environments allocated more biomass to aboveground parts, had taller shoots, larger Specific Green (leaf) Area and consumed less water than ramets grown in similar conditions but in a homogeneous environment. Results confirm the hypothesis that connected ramets in heterogeneous environments are specialised to capture locally abundant resources and share these with connected ramets growing in other habitats. The result of DoL is that the entire connected ramet system benefits and achieves higher biomass.  相似文献   

17.
Paris quadrifolia (herb Paris) is a long-lived, clonal woodland herb that shows strong differences in local population size and shoot density along an environmental gradient of soil and light conditions. This environmentally based structuring may be mediated by differences in clonal growth and seedling recruitment through sexual reproduction. To study the interrelationship between environmental conditions and spatial patterns of clonal growth, the spatial genetic structure of four P. quadrifolia populations growing in strongly contrasting sites was determined. In the first place, plant excavations were performed in order to (i) determine differences in below-ground growth of genets, (ii) investigate connectedness of ramets and (iii) determine total genet size. Although no differences in internode length were found among sites, clones in moist sites were much smaller (genets usually consisted of 1-3 interconnected shoots, most of them flowering) than genets in dry sites, which consisted of up to 15 interconnected shoots, the majority of which were vegetative. Further, amplified fragment length polymorphism (AFLP) markers were used. Clonal diversity was higher in populations located in moist and productive ash-poplar forests compared to those found in drier and less productive mixed forest sites (G/N: 0.27 and 0.14 and Simpson's D: 0.84 and 0.75, respectively). Patterns of spatial population genetic structure under dry conditions revealed several large clones dominating the entire population, whereas in moist sites many small genets were observed. Nevertheless, strong spatial genetic structure of the genet population was observed. Our results clearly demonstrate that patterns of clonal diversity and growth form of P. quadrifolia differ among environments. Limited seedling recruitment and large clone sizes due to higher connectedness of ramets explain the low clonal diversity in dry sites. In moist sites, higher levels of clonal diversity and small clone sizes indicate repeated seedling recruitment, whereas strong spatial genetic structure suggests limited seed dispersal within populations.  相似文献   

18.
Clonal fragments of Glechoma hederacea L. (Lamiaceae) were subjected to environments in which light and nutrients were supplied with a strictly negative association in space, i.e. when one of these resources was in ample supply the other was scarce. Treatments were chosen to simulate environments in which clones grew either within homogeneous conditions or across patch types (heterogeneous conditions). The hypothesis was tested that reciprocal translocation (i.e. exchange of both nutrients and assimilates) between connected groups of ramets would increase biomass production of clones growing under heterogeneous conditions compared to that of clones growing in homogeneous conditions. A cost-benefit analysis was carried out to test this hypothesis. Results suggested that reciprocal translocation did not occur at the structural scale considered in this experiment; no evidence was found for a significant effect on whole clone biomass of assimilate and/or nutrient translocation between clone parts experiencing contrasting levels of resource supply. It is suggested that predominantly acropetal movement of resources and the pattern of integrated physiological unit formation in G. hederacea are the main properties responsible for the lack of mutual physiological support between connected clonal fragments growing in differing habitat conditions. These properties are expected to promote clonal expansion and the exploitation of new territory, rather than sustaining clone parts in sub-optimal patches of habitat for prolonged periods of time.  相似文献   

19.
The effects of the availability of light (high, medium and low) and soil water (wet and dry) on morphological and physiological traits responsible for whole plant carbon gain and ramet biomass accumulation were examined in a splitter-type clonal herbaceous species Primula sieboldii, a spring plant inhabiting broad range of light environments including open grassland and oak forest understory. Growth experiments were conducted for three genets originated from natural microhabitats differing in light and soil water availability. Ramets of a genet from high light and wet microhabitat, which were grown in low light (relative photon flux density: R-PPFD of 5%) showed 41% less light-saturated photosynthetic rate, 50% less dark respiration rate and earlier defoliation than the ramets in high light (R-PPFD of 61%). The estimation of daily photosynthesis revealed that the light acclimation response in leaf gas exchange contributes to efficient carbon gain of whole plants, irrespective of experimental light conditions. Water stress increased root weight ratio, decreased ramet leaf area, petiole length and photosynthetic capacity. These morphological effects of water stress were larger in high and medium light regimes than in low light regime. The consequence of the above responses was recognized in the relative growth rate of the ramets. The relative growth rate of the ramets in high light with wet regime was four-fold of that in low light plus wet regime, and was 1.5-fold of that in high light plus dry regime. However, even in low light and/or dry regimes, ramets kept positive relative growth rates and produced gemma successfully. We could not detect significant variation in growth responses among genets. The high photosynthetic plasticity revealed in the present study should enable Primula sieboldii to inhabit in a broad range of light and soil water availability.  相似文献   

20.

Background and Aims

One of the special properties of clonal plants is the capacity for physiological integration, which can increase plant performance through mechanisms such as resource sharing and co-ordinated phenotypic plasticity when plants grow in microsites with contrasting resource availabilities. However, many clonal plants are colonized by arbuscular mycorrhizal fungi (AMF). Since AMF are likely to reduce contrasts in effective resource levels, they could also reduce these effects of clonal integration on plasticity and performance in heterogeneous environments.

Methods

To test this hypothesis, pairs of connected and disconnected ramets of the stoloniferous herb Trifolium repens were grown. One ramet in a pair was given high light and low nutrients while the other ramet was given high nutrients and low light. The pairs were inoculated with zero, one or five species of AMF.

Key Results

Pairs of ramets grown without AMF developed division of labour and benefited from resource sharing, as indicated by effects of connection on allocation to roots, accumulation of mass, and ramet production. Inoculation with five species of AMF significantly reduced these effects of connection, both by inhibiting them in ramets given high nutrients and inducing them in ramets given high light. Inoculation with one species of AMF also reduced some effects of connection, but generally to a lesser degree.

Conclusions

The results show that AMF can significantly modify the effects of clonal integration on the plasticity and performance of clonal plants in heterogeneous environments. In particular, AMF may partly replace the effects and benefits of clonal integration in low-nutrient habitats, possibly more so where species richness of AMF is high. This provides the first test of interaction between colonization by AMF and physiological integration in a clonal plant, and a new example of how biotic and abiotic factors could interact to determine the ecological importance of clonal growth.Key words: Arbuscular mycorrhizal fungi, biomass allocation, clonal plant, division of labour, environmental heterogeneity, light availability, nutrients, white clover  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号