首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: Use of microsatellite PCR to monitor populations of Saccharomyces cerevisiae strains during fermentation of grape juice. METHOD AND RESULTS: Six commercial wine strains of S. cerevisiae were screened for polymorphism at the SC8132X locus using a modified rapid PCR identification technique. The strains formed four distinct polymorphic groups that could be readily distinguished from one another. Fermentations inoculated with mixtures of three strains polymorphic at the SC8132X locus were monitored until sugar utilization was complete, and all exhibited a changing population structure throughout the fermentation. CONCLUSIONS: Rapid population quantification demonstrated that wine fermentations are dynamic and do not necessarily reflect the initial yeast population structure. One or more yeast strains were found to dominate at different stages of the fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The population structure of S. cerevisiae during mixed culture wine fermentation is dynamic and could modify the chemical composition and flavour profile of wine.  相似文献   

2.
Yu Z  Zhao H  Li H  Zhang Q  Lei H  Zhao M 《Biotechnology letters》2012,34(2):365-370
Saccharomyces pastorianus FBY0095 was mutated and variants were selected for efficient very high gravity brewing using 15% (w/v) maltose and 15% (w/v) ethanol. Two useful variants were obtained of which one (L6) had growth, wort consumption and ethanol production rates of 0.036, 1.13 and 0.49 g l−1 h−1, respectively. The corresponding results for the wild type were 0.028, 0.98 and 0.4 g l−1 h−1, respectively. The vitality of the variant (expressed as acidification power) was 2.5 while that of the wild type was 2.3. There was also an obvious improvement on flavor of resulting beer when using L6 and the other variant.  相似文献   

3.
Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.  相似文献   

4.
The net effect of increased wort osmolarity on fermentation time, bottom yeast vitality and sedimentation, beer flavor compounds, and haze was determined in fermentations with 12° all-malt wort supplemented with sorbitol to reach osmolarity equal to 16° and 20°. Three pitchings were performed in 12°/12°/12°, 16°/16°/12°, and 20°/20°/12° worts. Fermentations in 16° and 20° worts decreased yeast vitality measured as acidification power (AP) by a maximum of 10%, lowered yeast proliferation, and increased fermentation time. Repitching aggravated these effects. The 3rd “back to normal” pitching into 12° wort restored the yeast AP and reproductive abilities while the extended fermentation time remained. Yeast sedimentation in 16° and 20° worts was delayed but increased about two times at fermentation end relative to that in 12° wort. Third “back-to-normal” pitching abolished the delay in sedimentation and reduced its extent, which became nearly equal in all variants. Beer brewed at increased osmolarity was characterized by increased levels of diacetyl and pentanedione and lower levels of dimethylsulfide and acetaldehyde. Esters and higher alcohols displayed small variations irrespective of wort osmolarity or repitching. Increased wort osmolarity had no appreciable effect on the haze of green beer and accelerated beer clarification during maturation. In all variants, chill haze increased with repitching.  相似文献   

5.
AIMS: Characterize from both genetic and phenotypic standpoints the indigenous strains of Saccharomyces spp. associated with natural fermentation of 'Malvasia delle Lipari'. METHODS AND RESULTS: A total of 192 yeast isolates were obtained from completed fermentation of a mix of 'Malvasia delle Lipari' (92%) and 'Corinto nero' (8%) grapes in two wineries in Salina Island (Sicily, Italy). Fifty-one Saccharomyces spp. isolates were characterized using ITS-PCR, random amplified polymorphic DNA-PCR and mitochondrial DNA restriction fragment length polymorphism and 12 biotypes were identified. Representative strains of each biotype, tested for their physiological traits, exhibit different killer activity, fermentation vigour, production of hydrogen sulphide and show similar beta-glucosidase and proteolytic activity. CONCLUSIONS: It is possible to cluster in different groups naturally occurring indigenous biotypes of Saccharomyces cerevisiae from 'Malvasia delle Lipari' on the basis of molecular profiles. SIGNIFICANCE AND IMPACT OF THE STUDY: Deeper insight on indigenous wine yeast of a conserved environment. The knowledge gained might offer a contribution to the selection of autochthonous wine yeast as starters for controlled fermentations.  相似文献   

6.
Genetic relationships of 24 phenotypically different strains isolated from sorghum beer in West Africa and the type cultures of the Saccharomyces sensu stricto species were investigated by universally primed polymerase chain reaction (PCR) analysis, microsatellite fingerprinting and PCR-restriction fragment length polymorphism (RFLP) of the ribosomal internal transcribed spacers. The results demonstrate that internal transcribed spacer (ITS) PCR-RFLP analysis with the endonucleases HaeIII, HpaII, ScrFI and TaqI is useful for discriminating S. cerevisiae, S. kudriavzevii, S. mikatae from one another and from the S. bayanus/S. pastorianus and S. cariocanus/S. paradoxus pairs. The sorghum beer strains exhibited the same restriction patterns as the type culture of S. cerevisiae CBS 1171. PCR profiles generated with the microsatellite primer (GTG)(5) and the universal primer N21 were almost identical for all isolates and strain CBS 1171. Despite phenotypic peculiarities, the strains involved in sorghum beer production in Ghana and Burkina Faso belong to S. cerevisiae. However, based on sequencing of the rDNA ITS1 region and Southern hybridisation analysis, these strains represent a divergent population of S. cerevisiae.  相似文献   

7.
8.
The multi-yeast strain composition of wine fermentations has been well established. However, the effect of multiple strains of Saccharomyces spp. on wine flavour is unknown. Here, we demonstrate that multiple strains of Saccharomyces grown together in grape juice can affect the profile of aroma compounds that accumulate during fermentation. A metabolic footprint of each yeast in monoculture, mixed cultures or blended wines was derived by gas chromatography - mass spectrometry measurement of volatiles accumulated during fermentation. The resultant ion spectrograms were transformed and compared by principal-component analysis. The principal-component analysis showed that the profiles of compounds present in wines made by mixed-culture fermentation were different from those where yeasts were grown in monoculture fermentation, and these differences could not be produced by blending wines. Blending of monoculture wines to mimic the population composition of mixed-culture wines showed that yeast metabolic interactions could account for these differences. Additionally, the yeast strain contribution of volatiles to a mixed fermentation cannot be predicted by the population of that yeast. This study provides a novel way to measure the population status of wine fermentations by metabolic footprinting.  相似文献   

9.
Summary With a slight modification the method previously reported by Vrbaški and Lepojević,J. Chromatog. 558, 328–332 (1991) can be applied to the analysis of carbohydrates in worts, beer and brewing syrup. The modification introduces new a third step to the development of plates using chloroform/glac. acetic acid/water (2;6;2 by vol). By this method it is possible to separate maltooligosaccharides up to 17 spots. Evidence of a difference between the yeast strains in fermentation of carbohydrate is also presented.  相似文献   

10.
Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.  相似文献   

11.
A total of 103 isolates of Aeromonas spp. were obtained over a 3-year period from a natural mineral water and from surface streams located within the boundaries of the watershed of the natural mineral water wells and were typed by macrorestriction analysis of genomic DNA with XbaI and by pulsed-field gel electrophoresis. All Aeromonas caviae isolates from the natural mineral water belonged to the same clone, and an analogous clonal identity was found among Aeromonas hydrophila isolates. These two clones expressed no hemolytic or cytotoxic activities. Aeromonas isolates from surface waters showed high molecular heterogeneity and were not related to the clones found in the natural mineral water. The presence of aeromonads chronically found in the natural mineral water was a likely consequence of a localized development of a biofilm, with no exogenous contamination of the aquifer. Molecular fingerprinting of drinking water isolates is a useful tool in explaining possible reasons for bacterial occurrences.  相似文献   

12.
Aims: To examine the variability among Pasteurella multocida strains isolated from pigs (nasal, tonsil and lung specimens) and humans in France. Methods and Results: The genetic diversity of 117 French isolates of P. multocida, obtained from pigs (n = 101) and humans (n = 16) and three reference strains, was evaluated by pulsed‐field gel electrophoresis (PFGE) after macrorestriction with ApaI. Sixty‐four patterns were detected. The genetic relationships revealed five clusters (Aa1, Aa2, Aa3, Ab and B). The pig isolates obtained from pneumonic lungs and nasal cavities were clustered in groups Ab and Aa1, respectively (P < 0·05). Up to four different PFGE patterns were detected in the same farm. Isolates producing dermonecrotic toxins were clustered only in group Aa1, suggesting that the toxigenic isolates were more genetically homogenous than the others. Conversely, cluster Aa3 was significantly associated with human isolates even if the human isolates are spread over most of the clusters. Conclusions: Pasteurella multocida strains were genetically diverse, but pig and human isolates were significantly clustered in distinct phylogenetic groups. Significance and Impact of the Study: The discrimination index was >0·95 in both populations of human and pig isolates. Therefore, ApaI‐PFGE seems to be a useful tool for epidemiological tracing of P. multocida infections.  相似文献   

13.
ABSTRACT: BACKGROUND: Interspecific hybrids between S. cerevisiae x S. kudriavzevii have frequently been detected in wine and beer fermentations. Significant physiological differences among parental and hybrid strains under different stress conditions have been evidenced. In this study, we used comparative genome hybridization analysis to evaluate the genome composition of different S. cerevisiae x S. kudriavzevii natural hybrids isolated from wine and beer fermentations to infer their evolutionary origins and to figure out the potential role of common S. kudriavzevii gene fraction present in these hybrids. RESULTS: Comparative genomic hybridization (CGH) and ploidy analyses carried out in this study confirmed the presence of individual and differential chromosomal composition patterns for most S. cerevisiae x S. kudriavzevii hybrids from beer and wine. All hybrids share a common set of depleted S. cerevisiae genes, which also are depleted or absent in the wine strains studied so far, and the presence a common set of S. kudriavzevii genes, which may be associated with their capability to grow at low temperatures. Finally, a maximum parsimony analysis of chromosomal rearrangement events, occurred in the hybrid genomes, indicated the presence of two main groups of wine hybrids and different divergent lineages of brewing strains. CONCLUSION: Our data suggest that wine and beer S. cerevisiae x S. kudriavzevii hybrids have been originated by different rare-mating events involving a diploid wine S. cerevisiae and a haploid or diploid European S. kudriavzevii strains. Hybrids maintain several S. kudriavzevii genes involved in cold adaptation as well as those related to S. kudriavzevii mitochondrial functions.  相似文献   

14.
AIMS: To investigate the distribution and the level of diversity of extrachromosomal molecules in Lactobacillus helveticus strains in relation to their different ecological niches. METHODS AND RESULTS: The plasmid profile of 22 Lact. helveticus strains, isolated from five different Italian cheeses, was determined. Among the tested strains, there was a variable presence of plasmids: eight plasmid-free strains and the remaining with several plasmids that could be differentiated on the basis of number and molecular weight. The profiles showed between one and five plasmid bands, which size ranged between 2.3 and 31 kb. Four of these plasmids were further analyzed by restriction digestion and compared with the plasmids from Lact. helveticus ATCC 15009(T). Analyses and comparison of their primary structures and hybridization experiments revealed the presence of different DNA homology groups. CONCLUSIONS: This study indicates that within Lact. helveticus species, there is a high degree of variability in relation to the presence of plasmid molecules. Moreover, the structural diversity found among some of these plasmids allows to hypothesize the presence of different evolutionary lineages. SIGNIFICANCE AND IMPACT OF THE STUDY: Studies on plasmid distribution and diversity should be considered as an essential component in a continuing effort to explore microbial diversity as well as to understand the real role of plasmids in the flow of genetic information in natural bacterial communities.  相似文献   

15.
16.
Intraspecies diversity within Ustilago scitaminea isolates from South Africa, Reunion Island, Hawaii and Guadeloupe was assessed by RAPDs, bE mating-type gene detection, rDNA sequence analysis, microscopy and germination and morphological studies. Except for sequence data, the other analyses yielded no differences in the isolates that could be used in a phylogenetic separation. Mycelial DNA of the SA isolate shared 100% sequence identity with that of mycelial DNA cultured from in vitro produced teliospores of the parent cultivar. Overall the ITS1 and ITS2 regions were found to have 96.1% and 96.9% sequence identity with a total of 17 and 21 base changes, respectively, amongst the isolates. The Reunion Island isolate was shown to be most distantly related by 3.6% to the other isolates, indicating a single clonal lineage. The lack of germination in teliospores from Guadeloupe may be attributed to changes in temperature and humidity during transportation.  相似文献   

17.
Reticulate evolution can be a major driver of diversification into new niches, especially in disturbed habitats and at the edges of ranges. Industrial fermentation strains of yeast provide a window into these processes, but progress has been hampered by a limited understanding of the natural diversity and distribution of Saccharomyces species and populations. For example, lager beer is brewed with Saccharomyces pastorianus, an alloploid hybrid of S. cerevisiae and S. eubayanus, a species only recently discovered in Patagonia, Argentina. Here, we report that genetically diverse strains of S. eubayanus are readily isolated from Patagonia, demonstrating that the species is well established there. Analyses of multilocus sequence data strongly suggest that there are two diverse and highly differentiated Patagonian populations. The low nucleotide diversity found in the S. eubayanus moiety of hybrid European brewing strains suggests that their alleles were drawn from a small subpopulation that is closely related to one of the Patagonian populations. For the first time, we also report the rare isolation of S. eubayanus outside Patagonia, in Wisconsin, USA. In contrast to the clear population differentiation in Patagonia, the North American strains represent a recent and possibly transient admixture of the two Patagonian populations. These complex and varied reticulation events are not adequately captured by conventional phylogenetic methods and required analyses of Bayesian concordance factors and phylogenetic networks to accurately summarize and interpret. These findings show how genetically diverse eukaryotic microbes can produce rare but economically important hybrids with low genetic diversity when they migrate from their natural ecological context.  相似文献   

18.
The genome from the Saccharomyces pastorianus industrial lager brewing strain Weihenstephan 34/70, a natural Saccharomyces cerevisiae/Saccharomyces eubayanus hybrid, indicated the presence of two different maltotriose transporter genes: a new gene in the S. eubayanus subgenome with 81% of homology to the AGT1 permease from S. cerevisiae, and an amplification of the S. eubayanus MTY1 maltotriose permease previously identified in S. pastorianus yeasts. To characterize these S. eubayanus transporter genes, we used a S. cerevisiae strain deleted in the AGT1 permease and introduced the desired permease gene(s) into this locus through homologous recombination. Our results indicate that both the MTY1 and AGT1 genes from the S. eubayanus subgenome encode functional maltotriose transporters that allow fermentation of this sugar by yeast cells, despite their apparent differences in the kinetics of maltotriose‐H+ symport activity. The presence of two maltotriose transporters in the S. eubayanus subgenome not only highlights the importance of sugar transport for efficient maltotriose utilization by industrial yeasts, but these new genes can be used in breeding and/or selection programs aimed at increasing yeast fitness for the efficient fermentation of brewer's wort.  相似文献   

19.
We assessed the molecular characterization of 96 clinical isolates of S. cerevisiae from a Spanish medical institution and we compared them with 6 non-clinical strains isolated from wine, beer and bread and 1 S. boulardii strain collected from a commercial preparation. The strains were subjected to HinfI mtDNA restriction analysis and PCR amplification of delta sequences. Although both techniques are appropriate for routine clinical analysis, that based on PCR turned out to be the most discriminating. This study, apart from providing tools for clinical application, deals with the relationships between clinical and non-clinical strains. The two baker's yeasts analysed shared mtDNA and PCR patterns with a group of 31 clinical isolates. An exogenous entry of a strain was also reflected in the case of 19 clinical isolates and the therapeutic strain S. boulardii. Both baker's yeasts and S. boulardii were identified respectively among 32.3% and 19.8% of the clinical isolates and there seemed to be a connection between their ability to colonize humans and their ability to cause vaginal infection. The rest of food isolates were not grouped with clinical strains.  相似文献   

20.
AIMS: Investigation of the meiotic segregation of karyotypes and physiological traits in indigenous Saccharomyces strains isolated from Aglianico (South Italy) red wine. METHODS AND RESULTS: Segregation was studied in F1 and F2 descendants. Tetrads were isolated from sporulating cultures by micromanipulation. The spore clones were subjected to karyotype analysis by pulse-field gel electrophoresis (Bio-Rad model CHEF-DR II) and to various physiological tests. Certain chromosomes of the isolates showed 2:2 segregation patterns in F1 but proved to be stable in F2. The ability of cells to utilize maltose also segregated in a 2 : 2 manner in F1 and did not segregate in F2. Resistance to CuSO4, SO2 tolerance, the fermentative power and the production of certain metabolites segregated in both F1 and F2 generations and showed patterns indicating the involvement of polygenic regulation. CONCLUSIONS: The analysis revealed a high degree of genetic instability and demonstrated that meiosis can improve chromosomal and genetic stability. SIGNIFICANCE AND IMPACT OF THE STUDY: Winemaking is critically dependent on the physiological properties and genetic stability of the fermenting Saccharomyces yeasts. Selection of clones from F2 or later generations can be a method of reduction of genetic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号