首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important roles in insulin secretion through their receptors, GLP1R and GIPR. Although GLP-1 and GIP are attractive candidates for treatment of type 2 diabetes and obesity, little is known regarding the molecular interaction of these peptides with the heptahelical core domain of their receptors. These core domains are important not only for specific ligand binding but also for ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R/GIPR, we determined that evolutionarily conserved amino acid residues such as Ile(196) at transmembrane helix 2, Leu(232) and Met(233) at extracellular loop 1, and Asn(302) at extracellular loop 2 of GLP1R are responsible for interaction with ligand and receptor activation. Application of chimeric GLP-1/GIP peptides together with molecular modeling suggests that His(1) of GLP-1 interacts with Asn(302) of GLP1R and that Thr(7) of GLP-1 has close contact with a binding pocket formed by Ile(196), Leu(232), and Met(233) of GLP1R. This study may provide critical clues for the development of peptide and/or nonpeptide agonists acting at GLP1R.  相似文献   

2.
Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.  相似文献   

3.
Glucagon-like peptides (GLP-1 and GLP-2) are two proglucagon-derived intestinal hormones that mediate distinct physiological functions through two related receptors (GLP-1R and GLP-2R) which are important drug targets for metabolic disorders and Crohn’s disease, respectively. Despite great progress in GLP-1R structure determination, our understanding on the differences of peptide binding and signal transduction between these two receptors remains elusive. Here we report the electron microscopy structure of the human GLP-2R in complex with GLP-2 and a Gs heterotrimer. To accommodate GLP-2 rather than GLP-1, GLP-2R fine-tunes the conformations of the extracellular parts of transmembrane helices (TMs) 1, 5, 7 and extracellular loop 1 (ECL1). In contrast to GLP-1, the N-terminal histidine of GLP-2 penetrates into the receptor core with a unique orientation. The middle region of GLP-2 engages with TM1 and TM7 more extensively than with ECL2, and the GLP-2 C-terminus closely attaches to ECL1, which is the most protruded among 9 class B G protein-coupled receptors (GPCRs). Functional studies revealed that the above three segments of GLP-2 are essential for GLP-2 recognition and receptor activation, especially the middle region. These results provide new insights into the molecular basis of ligand specificity in class B GPCRs and may facilitate the development of more specific therapeutics.Subject terms: Cryoelectron microscopy, Hormone receptors  相似文献   

4.
We have established a cAMP response element (CRE)-mediated reporter assay system for G-protein-coupled receptors (GPCRs) using an oriP-based estrogen-inducible expression vector and the B-cell line (GBC53 or GBCC71) that expresses EBNA-1 and is adapted to serum-free culture. GBC53 harbors a GAL4-ER expression unit and a CRE-luciferase gene in the genome, and GBCC71 also harbors expression units for two chimeric Gαs proteins (Gs/q and Gs/i). Introduction of a GPCR expression plasmid into GBC53 or GBCC71 creates polyclonal stable transformants in 2 weeks, and these are easily expanded and used for assays after induction of the GPCR expression. Using GBC53, we detected ligand-dependent signals of Gs-coupled GPCRs such as glucagon-like peptide 1 receptor (GLP1R) and β2 adrenergic receptor (β2AR) with high sensitivity. Interestingly, we also detected constitutive activity of β2AR. Using GBCC71, we detected ligand-dependent signals of Gq- or Gi-coupled GPCRs such as H1 histamine receptor and CXCR1 chemokine receptor in addition to Gs-coupled GPCRs. An agonist, antagonist, or inverse agonist was successfully evaluated in this system. We succeeded in constructing a 384-well high-throughput screening (HTS) system for GLP1R. This system enabled us to easily and rapidly make a large number of efficient GPCR assay systems suitable for HTS as well as ligand hunting of orphan GPCRs.  相似文献   

5.
The activation mechanism of class-C G-protein coupled receptors   总被引:4,自引:0,他引:4  
Class-C G-protein coupled receptors (GPCRs) represent a distant group among the large family of GPCRs. This class includes the receptors for the main neurotransmitters, glutamate and gamma-aminobutyric acid (GABA), and the receptors for Ca(2+), some taste and pheromone molecules, as well as some orphan receptors. Like any other GPCRs, class-C receptors possess a heptahelical domain (HD) involved in heterotrimeric G-protein activation, but most of them also have a large extracellular domain (ECD) responsible for agonist recognition and binding. In addition, it is now well accepted that these receptors are dimers, either homo or heterodimers. This complex architecture raises a number of important questions. Here we will discuss our view of how agonist binding within the large ECD triggers the necessary change of conformation, or stabilize a specific conformation, of the heptahelical domain leading to G-protein activation. How ligands acting within the heptahelical domain can change the properties of these complex macromolecules.  相似文献   

6.
G protein coupled receptors (GPCRs) form homo- and hetero-dimers or -oligomers, which are functionally important. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophopholipids involved in diverse biological processes. We have examined homo- and hetero-dimerization among three major LPA receptors (LPA(1-3)), three major S1P receptors (S1P(1-3)), as well as OGR1 and GPR4. Using LacZ complementation assays, we have shown that LPA receptors form homo- and hetero-dimers within the LPA receptor subgroup and hetero-dimers with other receptors (S1P(1-3) and GPR4). In addition, we have found that although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors. Using chimeric receptors between GPR4 and OGR1, we have shown that different domains of GPR4 receptor are involved in its dimerization with different GPCRs and more than one domain may be involved in some of the complex formation. Our results suggest that when studying a signal transduction induced by a stimulus, not only is the expression and activation of its own receptor(s), but also the status of the interacting receptors should be taken into consideration.  相似文献   

7.
G-protein coupled receptors (GPCRs) represent the largest membrane proteins family in animal genomes. Being the receptors for most hormones and neurotransmitters, these proteins play a central role in intercellular communication. GPCRs can be classified into several groups based on the sequence similarity of their common structural feature: the heptahelical domain. The metabotropic receptors for the main neurotransmitters glutamate and gamma-aminobutyric acid (GABA) belong to the class III of GPCRs, together with others receptors for Ca2+, for sweet and amino acid taste compounds and for some pheromones, as well as for odorants in fish. Besides their transmembrane heptahelical domain responsible for G-protein activation, most of class III receptors possess a large extracellular domain responsible for ligand recognition. The recent resolution of the structure of this binding domain of one of these receptors, the mGlu1 receptor, together with the recent demonstration that these receptors are dimers, revealed an original mechanism of activation for these GPCRs. Such data open new possibilities to develop drugs aimed at modulating these receptors, and raised a number of interesting questions on the activation mechanism of other GPCRs.  相似文献   

8.
The bradykinin (BK) B(2) and B(1) receptors (B(2)R, B(1)R) belong to the rhodopsin-like G protein-coupled receptors (GPCRs) and are involved in (patho)physiological processes such as blood pressure regulation or inflammation. They mediate the effects of the pro-inflammatory peptides bradykinin/kallidin and desArg(9)-BK/desArg(10)-kallidin, respectively. Whereas the B(2)R is constitutively expressed and gets internalized upon activation, the B(1)R is especially induced by inflammatory mediators and responds to stimulation with increased surface receptor numbers. Stimulation of both receptors activates phospholipase Cβ (PLCβ) and mitogen activated protein kinase (MAPK) signaling. Because inflammatory processes are characterized by heat (fever), we analyzed the effect of increased temperature (41°C vs. 37°C) on B(1)R and B(2)R signaling in HEK 293 and IMR 90 cells. Our results show that signaling of both receptors is temperature-sensitive, however to a different extent and with regard to the investigated pathways. Comparing PLCβ activity and Ca(2+)-regulated signals, a temperature-dependent increase was only observed for B(1)R but not for B(2)R activation, whereas MAPK activities were doubled at 41°C for both receptors. Taken together, our findings suggest that the observed temperature sensitivity of B(1)R-induced PLCβ activation is B(1)R-specific. In contrast, the enhanced stimulation of MAPK activity under hyperthermic conditions appears to be a common phenomenon for GPCRs.  相似文献   

9.
Formyl peptide receptor (FPR) and C5a receptor (C5aR) are chemoattractant G protein-coupled receptors (GPCRs) involved in the innate immune response against bacterial infections and tissue injury. Like other GPCRs, they recruit beta-arrestin1/2 to the plasma membrane and activate the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Previous studies with several GPCRs have suggested that beta-arrestins play an important role as signal transducers by scaffolding signaling molecules such as ERK1/2. This function of the beta-arrestins was not discovered until several years after their role in desensitization and endocytosis had been reported. In this study, we investigated the role of the beta-arrestins in the activation of ERK1/2 and receptor endocytosis. We took advantage of previously described mutants of FPR that have defects in G(i) coupling or beta-arrestin recruitment. The results obtained with the mutant FPRs, as well as experiments using an inhibitor of G(i) and cells overexpressing beta-arrestin2, showed that activation of ERK1/2 takes place through G(i) and is not affected by beta-arrestins. However, overexpression of beta-arrestin2 does enhance FPR sequestration from the cell surface, suggesting a role in desensitization, as shown for many other GPCRs. Experiments with CHO C5aR cells showed similar sensitivity to the G(i) inhibitor as CHO FPR cells, suggesting that the predominant activation of ERK1/2 through G protein may be a common characteristic among chemoattractant receptors.  相似文献   

10.
G protein-coupled receptors (GPCRs) constitute a large and functionally diverse family of transmembrane proteins. They are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways and are among the most targeted proteins in drug discovery. The detailed molecular mechanism for agonist-induced activation of rhodopsin-like GPCRs has not yet been described. Using a combination of site-directed mutagenesis and molecular modeling, we characterized important steps in the activation of the human histamine H1 receptor. Both Ser3.36 and Asn7.45 are important links between histamine binding and previously proposed conformational changes in helices 6 and 7. Ser3.36 acts as a rotamer toggle switch that, upon agonist binding, initiates the activation of the receptor through Asn7.45. The proposed transduction involves specific residues that are conserved among rhodopsin-like GPCRs.  相似文献   

11.
To date very few G protein-coupled receptors (GPCRs) have been shown to be connected to the Janus kinase (JAK)/STAT pathway. Thus our understanding of the mechanisms involved in the activation of this signaling pathway by GPCRs remains limited. In addition, little is known about the role of the JAK pathway in the physiological or pathophysiological functions of GPCRs. Here, we described a new mechanism of JAK activation that involves Galpha(q) proteins. Indeed, transfection of a constitutively activated mutant of Galpha(q) (Q209L) in COS-7 cells demonstrated that Galpha(q) is able to associate and activate JAK2. In addition, we showed that this mechanism is used to activate JAK2 by a GPCR principally coupled to G(q), the CCK2 receptor (CCK2R), and involves a highly conserved sequence in GPCRs, the NPXXY motif. In a pancreatic tumor cell line expressing the endogenous CCK2R, we demonstrated the activation of the JAK2/STAT3 pathway by this receptor and the involvement of this signaling pathway in the proliferative effects of the CCK2R. In addition, we showed in vivo that the targeted CCK2R expression in pancreas of Elas-CCK2 mice leads to the activation of JAK2 and STAT3. This process may contribute to the increase of pancreas growth as well as the formation of preneoplastic lesions leading to pancreatic tumor development observed in these transgenic animals.  相似文献   

12.
In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.  相似文献   

13.
G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the β1 and β2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.  相似文献   

14.
Cyclic adenosine monophosphate (cAMP) is a second messenger of many G-protein-coupled receptors (GPCRs) and a useful readout molecule to estimate the biological activity of various GPCR-specific agents. Here we report the development and use of a F?rster resonance energy transfer (FRET) biosensor for cAMP (Epac2-camps) combined with a baculovirus-based BacMam transduction system. The constructed BacMam-Epac2-camps viral transduction system is a simple and robust tool for ligand screening at the second-messenger level in a variety of mammalian cell lines. The level of biosensor protein expression can easily be adjusted in a dose-dependent manner depending on the multiplicity of viral infection. For setting up the assay, we used a B16F10 murine melanoma cell line with endogenous expression of melanocortin-1 receptor (MC(1)R). The receptor activation was characterized by a set of MC(1)R full and partial agonists. Bivalent ions Ca(2+) as well as Mg(2+) modulated ligand potencies, whereas the effect was ligand and ion specific. Results obtained for MC(1)R indicate that the BacMam-Epac2-camps system may also be applicable for studying the activation of other GPCRs and may be implemented in routine analysis as well as in high-throughput screening.  相似文献   

15.
Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A(1), A(2A), A(2B) and A(3) receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A(1)Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A(2A)R and A(2B)R undergo much faster downregulation, usually shorter than 1 h. The A(3)R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A(3)R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed.  相似文献   

16.
Glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones released in response to food intake and potentiate insulin secretion from pancreatic β cells through their distinct yet related G protein-coupled receptors, GLP1R and GIPR. While GLP-1 and GIP exhibit similarity in their N-terminal sequence and overall α-helical structure, GLP-1 does not bind to GIPR and vice versa. To determine which amino acid residues of these peptide ligands are responsible for specific interaction with their respective receptors, we generated mutant GIP in which several GLP-1-specific amino acid residues were substituted for the original amino acids. The potency of the mutant ligands was examined using HEK293 cells transfected with GLP1R or GIPR expression plasmids together with a cAMP-responsive element-driven luciferase (CRE-luc) reporter plasmid. A mutated GIP peptide in which Tyr1, Ile7, Asp15, and His18 were replaced by His, Thr, Glu, and Ala, respectively, was able to activate both GLP1R and GIPR with moderate potency. Replacing the original Tyr1 and/or Ile7 in the N-terminal moiety of this mutant peptide allowed full activation of GIPR but not of GLP1R. However, reintroducing Asp15 and/or His18 in the central α-helical region did not significantly alter the ligand potency. These results suggest that Tyr/His1 and Ile/Thr7 of GIP/GLP-1 peptides confer differential ligand selectivity toward GIPR and GLP1R.  相似文献   

17.
GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H+-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca2+ influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.  相似文献   

18.
G-protein-coupled receptors (GPCRs) are involved in a vast variety of cellular signal transduction processes from visual, taste and odor perceptions to sensing the levels of many hormones and neurotransmitters. As a result of agonist-induced conformation changes, GPCRs become activated and catalyze nucleotide exchange within the G proteins, thus detecting and amplifying the signal. GPCRs share a common heptahelical transmembrane structure as well as many conserved key residues and regions. Rhodopsins are prototypical GPCRs that detect photons in retinal photoreceptor cells and trigger a phototransduction cascade that culminates in neuronal signaling. Biophysical and biochemical studies of rhodopsin activation, and the recent crystal structure determination of bovine rhodopsin, have provided new information that enables a more complete mechanism of vertebrate rhodopsin activation to be proposed. In many aspects, rhodopsin might provide a structural and functional template for other members of the GPCR family.  相似文献   

19.
Metabotropic glutamate receptors (mGluRs) constitute an unique subclass of G protein-coupled receptors (GPCRs). These receptors are activated by the excitatory amino acid glutamate and play an essential role in regulating neural development and plasticity. In the present review, we overview the current understanding regarding the molecular mechanisms involved in the desensitization and endocytosis of Group 1 mGluRs as well as the relative contribution of desensitization to the spatial-temporal patterning of glutamate receptor signaling. Similar to what has been reported previously for prototypic GPCRs, mGluRs desensitization is mediated by second messenger-dependent protein kinases and GPCR kinases (GRKs). However, it remains to be determined whether mGluRs phosphorylation by GRKs and beta-arrestin binding are absolutely required for desensitization. Group 1 mGluRs endocytosis is both agonist-dependent and -independent. Agonist-dependent mGluRs internalization is mediated by a beta-arrestin- and dynamin-dependent clathrin-coated vesicle dependent endocytic pathway. The activation of Group 1 mGluRs also results in oscillatory Gq protein-coupling leading to the cyclical activation of phospholipase Cbeta thereby stimulating oscillations in both inositol 1,4,5-triphosphate formation and Ca(2+) release from intracellular stores. These glutamate receptor-stimulated Ca(2+) oscillations are translated into the synchronous activation of protein kinase C (PKC), which has led to the hypothesis that oscillatory mGluRs signaling involves the repetitive phosphorylation of mGluRs by PKC. However, recent experimental evidence suggests that oscillatory signaling is an intrinsic glutamate receptor property that is independent of feedback receptor phosphorylation by PKC. The challenge in the future will be to determine the structural determinants underlying mGluRs-mediated spatial-temporal signaling as well as to understand how complex signaling patterns can be interpreted by cells in both the developing and adult nervous systems.  相似文献   

20.
Bitter taste receptors (T2Rs) belong to G-protein-coupled receptors (GPCRs). Despite extensive studies, the precise mechanisms of GPCR activation are still poorly understood. In this study, the models of the human bitter taste receptor hTAS2R1 alone and in complex with various ligands were constructed on the basis of template-based modeling and molecular docking. Then these models were subjected to all-atom molecular dynamics (MD) simulations in explicit lipid bilayers. The binding pocket of hTAS2R1 is mainly formed by transmembrane helix (TM) III, TM V, TM VI, and TM VII. Most of the residues contributing to ligand binding are positionally conserved comparing with other hTAS2Rs. By comparing the final conformations obtained by extensive MD simulations, we identified the changes in the transmembrane helices and the intra- and extracellular loops, which were expected to initiate the activation of the receptor. The intracellular loop II (ICL2) and TM III were found to play prominent roles in the process of activation. We proposed that a set of interactions between the aromatic Phe115 in the middle of ICL2 and three residues (Tyr103, Lys106, and Val107) at the cytoplasmic end of TM III may serve as a conformational switch of hTAS2R1 activation. All of the residues involved in the switch are highly conserved among T2Rs. This indicates that the control switch we proposed may be universal in T2Rs. Besides, our results also suggest that the formation of a short helical segment in ICL2 may be necessary for the activation of hTAS2R1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号