首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Gene》1997,189(2):151-157
pMRA17 cloned from Pseudomonas K-62 plasmid pMR26 specified the resistance to both organic and inorganic mercurials. DNA sequence of this broad-spectrum resistant mer operon was determined. The 5504-bp sequence includes six open reading frames (ORFs), five of which were identified as merR, merT, merP, merA and merB in order by analysis of deletion mutants and by comparison with the DNA and amino acid (aa) sequences of previously sequenced mer operons. The merB encoding organomercurial lyase showed a less identity than the other mer genes with those from other broad-spectrum resistance operons. The remaining ORF named merE, located between merA and merB, had no significant homology with the published mer genes and seemed to be a new gene which may involve in phenylmercury resistance. Induction experiments and maxicell analyses of the mer-polypeptides revealed that pMRA17 mer operon expressed mercurial-inducible phenotype and the merB and merE as well as the merA were under the control of MerR which could activate not only by mercuric ion but also by organomercurials.© 1997 Elsevier Science B.V. All rights reserved.  相似文献   

2.
3.
4.
Kholodii G  Bogdanova E 《Genetica》2002,115(2):233-241
Escherichia coli K12 containing the transposon Tn5044 mer operon (merR, T, P, C, and A genes) is resistant to mercuric chloride at 30°C but sensitive to this compound at 37–41.5°C. We have studied the mechanism underlying the temperature-sensitive nature of this mercury resistance phenotype, and found that the expression of the Tn5044 merA gene coding for mercuric reductase (MerA) is severely inhibited at non-permissive temperatures. Additionally, MerA showed a considerably reduced functional activity in vivo at non-permissive temperatures. However, the temperature-sensitive character of the functioning of this enzyme in cell extracts, where it interacted with one of the low-molecular weight SH compounds rather than with the transport protein MerT (as is the case in vivo), was not apparent. These data suggest that the temperature-sensitive mercury resistance phenotype should stay under control at two stages: when the merA gene is expressed and when its product interacts with MerT to accept the mercuric ion.  相似文献   

5.
Streptomyces lividans 1326 carries inducible mercury resistance genes on the chromosome, which are arranged in two divergently transcribed operons. Expression of the genes is negatively regulated by the repressor MerR, which binds in the intercistronic region between the two operons. The merR gene was expressed in E. coli using a T7 RNA polymerase/promoter expression system, and MerR was purified to around 95% homogeneity by ammonium sulfate precipitation, gel filtration and affinity chromatography. Gel filtration showed that the native MerR is a dimer with a molecular mass of 31 kDa. Two DNA binding sites were identified in the intercistronic mer promoter region by footprinting experiments. No evidence for cooperativity in the binding of MerR to the adjacent operator sequences was observed in gel mobility shift assays. The dissociation constants (KD) for binding of MerR were: binding site I, 8.5 × 10−9 M; binding site II, 1.2 × 10−8 M; and for the complete promoter/operator region 1 × 10−8 M. The half-life of the MerR-DNA complex was 19.4 min and 18.8 min for binding site I and binding site II, respectively. The KD value for binding of mercury(II)chloride to MerR, again determined by mobility shift assay, was 1.1 × 10−7 M. Received: 18 August 1998 / Accepted: 5 May 1999  相似文献   

6.
7.
8.
9.
Mercury pollution has emerged as a major problem in industrialized zones and presents a serious threat to environment and health of local communities. Effectiveness and wide distribution of mer operon by horizontal and vertical gene transfer in its various forms among large community of microbe reflect importance and compatibility of this mechanism in nature. This review specifically describes mer operon and its generic molecular mechanism with reference to the central role played by merA gene and its related gene products. The combinatorial action of merA and merB together maintains broad spectrum mercury detoxification system for substantial detoxification of mercurial compounds. Feasibility of mer operon to coexist with antibiotic resistance gene (amp r , kan r , tet r ) clusters enables extensive adaptation of bacterial species to adverse environment. Flexibility of the mer genes to exist as intricate part of chromosome, plasmids, transposons, and integrons enables high distribution of these genes in wider microbial gene pool. Unique ability of this system to manipulate oligodynamic property of mercurial compounds for volatilization of mercuric ions (Hg2+) makes it possible for a wide range of microbes to tolerate mercury-mediated toxicity.  相似文献   

10.
Streptomyces lividans 1326 carries inducible mercury resistance genes on the chromosome, which are arranged in two divergently transcribed operons. Expression of the genes is negatively regulated by the repressor MerR, which binds in the intercistronic region between the two operons. The merR gene was expressed in E. coli using a T7 RNA polymerase/promoter expression system, and MerR was purified to around 95% homogeneity by ammonium sulfate precipitation, gel filtration and affinity chromatography. Gel filtration showed that the native MerR is a dimer with a molecular mass of 31?kDa. Two DNA binding sites were identified in the intercistronic mer promoter region by footprinting experiments. No evidence for cooperativity in the binding of MerR to the adjacent operator sequences was observed in gel mobility shift assays. The dissociation constants (KD) for binding of MerR were: binding site I, 8.5?×?10?9?M; binding site II, 1.2?×?10?8?M; and for the complete promoter/operator region 1?×?10?8?M. The half-life of the MerR-DNA complex was 19.4?min and 18.8?min for binding site I and binding site II, respectively. The KD value for binding of mercury(II)chloride to MerR, again determined by mobility shift assay, was 1.1?×?10?7?M.  相似文献   

11.
The distribution of DNA sequences homologous with three mer genes was determined in unselected and mercury-resistant water and sediment isolates. The maximum proportions of unselected bacterial isolates containing DNA hybridizing with the 358merA, 358merB, and 501merR probes, derived from gram-negative organisms, were 93.8, 21, and 100%, respectively. Up to 53.3% of mercury chloride-resistant isolates and 54% of methylmercury hydroxide-resistant isolates did not contain DNA homologous with 358merA or 358merB, respectively. Hybridizations performed at high and low stringencies demonstrated that divergence of the merA gene accounted for many of the mercury-resistant but probe-negative isolates. Sixteen mercury-resistant Bacillus spp. isolated from the least contaminated site all contained DNA homologous with 258merA, originally from a gram-positive organism, but only four hybridized weakly with 358merA. The results demonstrate the wide distribution of mercury resistance genes but, because of the diversity of genetic determinants, highlight the importance of using multiple detection techniques and gene probes derived from a variety of origins for such studies.  相似文献   

12.
We examined a region of high variability in the mosaic mercury resistance (mer) operon of natural bacterial isolates from the primate intestinal microbiota. The region between the merP and merA genes of nine mer loci was sequenced and either the merC, the merF, or no gene was present. Two novel merC genes were identified. Overall nucleotide diversity, π (per 100 sites), of the merC gene was greater (49.63) than adjacent merP (35.82) and merA (32.58) genes. However, the consequences of this variability for the predicted structure of the MerC protein are limited and putative functional elements (metal-binding ligands and transmembrane domains) are strongly conserved. Comparison of codon usage of the merTP, merC, and merA genes suggests that several merC genes are not coeval with their flanking sequences. Although evidence of homologous recombination within the very variable merC genes is not apparent, the flanking regions have higher homologies than merC, and recombination appears to be driving their overall sequence identities higher. The synonymous codon usage bias (ENC) values suggest greater variability in expression of the merC gene than in flanking genes in six different bacterial hosts. We propose a model for the evolution of MerC as a host-dependent, adventitious module of the mer operon. Received: 2 June 2000 / Accepted: 23 October 2000  相似文献   

13.
Mercuric reductase (MerA) is central to the mercury (Hg) resistance (mer) system, catalyzing the reduction of ionic Hg to volatile Hg(0). A total of 213 merA homologues were identified in sequence databases, the majority of which belonged to microbial lineages that occupy oxic environments. merA was absent among phototrophs and in lineages that inhabit anoxic environments. Phylogenetic reconstructions of MerA indicate that (i) merA originated in a thermophilic bacterium following the divergence of the Archaea and Bacteria with a subsequent acquisition in Archaea via horizontal gene transfer (HGT), (ii) HGT of merA was rare across phylum boundaries and (iii) MerA from marine bacteria formed distinct and strongly supported lineages. Collectively, these observations suggest that a combination of redox, light and salinity conditions constrain MerA to microbial lineages that occupy environments where the most oxidized and toxic form of Hg, Hg(II), predominates. Further, the taxon‐specific distribution of MerA with and without a 70 amino acid N‐terminal extension may reflect intracellular levels of thiols. In conclusion, MerA likely evolved following the widespread oxygenation of the biosphere in a thermal environment and its subsequent evolution has been modulated by the interactions of Hg with the intra‐ and extracellular environment of the organism.  相似文献   

14.
15.
16.
17.
18.
Devi Lal  Rup Lal 《Microbiology》2010,79(4):500-508
In the present study the role of horizontal gene transfer events in providing the mercury resistance is depicted. merA gene is key gene in mer operon and has been used for this swtudy. Phylogenetic analysis of aligned merA gene sequences shows broad similarities to the established 16S rRNA gene phylogeny. But there is no separation of bacterial merA gene from archael merA gene which suggests that merA gene in both these groups share considerable sequence homology. However, inconsistencies between merA gene and 16S rRNA gene phylogenetic trees are apparent for some taxa. These discrepancies in the phylogenetic trees for merA gene and 16S rRNA gene have lead to the suggestion that horizontal gene transfer (HGT) is a major contributor for its evolution. The close association among members of different groups in merA gene tree, as supported by high bootstrap values, deviations in GC content and codon usage pattern indicate the possibility that horizontal gene transfer events might have taken place during the evolution of this gene.  相似文献   

19.
The role of biological activities in the reduction and volatilization of Hg(II) from a polluted pond was investigated. Elemental mercury was evolved from pond water immediately following spiking with203Hg(NO3)2, whereas an acclimation period of 36 hours was required in control samples collected from a nearby, unpolluted river before onset of volatilization. Genes encoding the bacterial mercuric reductase enzyme (mer genes) were abundant in DNA fractions extracted from biomass of the pond microbial community, but not in samples extracted from control communities. Thus, evolution of Hg0 was probably due to activities mediated by the bacterial mercuric reductase. Of four characterizedmer operons, the system encoded by transposon 501 (mer(Tn501)) dominated and likely contributed to the majority of the observed Hg(II) volatilization. Thus,mer-mediated reduction and volatilization could be used to reduce Hg(II) concentrations in polluted waters, in turn decreasing rates of methylmercury formation by limiting substrate availability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号