首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.  相似文献   

2.
The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by 14CO2 assimilation) in isolated cells. In three of the four varieties tested, nodulated plants had lower leaf starch levels and higher activities of sucrose phosphate synthetase (SPS), and isolated mesophyll cells incorporated more carbon (percentage of total 14CO2 fixed) into sucrose and less into starch as compared to nonnodulated (nitrate-dependent) plants. The variation among cultivars and nitrogen treatments observed in the activity of SPS in leaf extracts was positively correlated with labeling of sucrose in isolated cells (r = 0.81) and negatively correlated with whole leaf starch content (r = −0.66). The results suggested that increased demand for assimilates by nodulated roots may be accommodated by greater partitioning of carbon into sucrose in the mesophyll cells. We have also confirmed the earlier report (Chatterton, Silvius 1979 Plant Physiol 64: 749-753) that photoperiod affects partitioning of fixed carbon into starch. Within two days of transfer of nodulated soybean Ransom plants from a 14-hour to a 7-hour photoperiod, leaf starch accumulation rates doubled, and this effect was associated with increased labeling of starch and decreased labeling of sucrose in isolated cells. Concurrently, activities of SPS, sucrose synthase, and uridine diphosphatase in leaves were decreased.  相似文献   

3.
Huber SC  Rufty TW  Kerr PS 《Plant physiology》1984,75(4):1080-1084
Studies were conducted to identify the existence of diurnal rhythms in sucrose phosphate synthase (SPS) activity in leaves of three soybean (Glycine max L. [Merr.]) and two tobacco (Nicotiana tabacum L.) cultivars and the effect of photoperiod (15 versus 7 hours) on carbohydrate partitioning and the rhythm in enzyme activity. Acclimation of all the genotypes tested to a short day (7 hours) photoperiod resulted in increased rates of starch accumulation, whereas rates of translocation, foliar sucrose concentrations, and activities of SPS were decreased relative to plants acclimated to long days (15 hours). Under the long day photoperiod, two of the three soybean cultivars (`Ransom' and `Jupiter') and one of the two tobacco cultivars (`22NF') studied exhibited a significant diurnal rhythm in SPS activity. With the soybean cultivars, acclimation to short days reduced the activity of SPS (leaf fresh weight basis) and tended to dampen the amplitude of the rhythm. With the tobacco cultivars, photoperiod affected the shape of the SPS-activity rhythm. The mean values for SPS activity (calculated from observations made during the light period) were correlated positively with translocation rates and were correlated negatively with starch accumulation rates. Overall, the results support the postulate that SPS activity is closely associated with starch/sucrose levels in leaves, and that acclimation to changes in photoperiod may be associated with changes in the activity of SPS.  相似文献   

4.
The gradients in photosynthetic and carbohydrate metabolism which persist within the fully expanded second leaf of barley ( Hordeum vulgare ) were examined. Although all regions of the leaf blade were green and photosynthetically active, the basal 5 cm, representing approximately 20% of the leaf area, retained some characteristics of sink tissue. The leaf blade distal from the leaf sheath exhibited characteristics typical of source tissue; the activities of sucrolytic enzymes (invertase and sucrose synthase) were relatively low, whilst that of sucrose phosphate synthase was high. These regions of the leaf accumulated sucrose throughout the photoperiod and starch only in the second half of the photoperiod whilst hexose sugars remained low. By contrast the leaf blade proximal to the leaf sheath retained relatively high activities of sucrolytic enzymes (especially soluble, acid invertase) whilst sucrose phosphate synthase activity was low. Glucose, as well as sucrose, accumulated throughout the photoperiod. Although starch accumulated in the second half of the photoperiod, a basal level of starch was present throughout the photoperiod, by contrast with the rest of the leaf. The 14CO2 feeding experiments indicated that a constant amount of photosynthate was partitioned towards starch in this region of the leaf irrespective of irradiance. These findings are interpreted as the base of the leaf blade acting as a localized sink for carbohydrate as a result of sucrose hydrolysis by acid invertase.  相似文献   

5.
Huber SC 《Plant physiology》1984,76(2):424-430
The effects of K-deficiency on carbon exchange rates (CER), photosynthate partitioning, export rate, and activities of key enzymes involved in sucrose metabolism were studied in soybean (Glycine max [L.] Merr.) leaves. The different parameters were monitored in mature leaves that had expanded prior to, or during, imposition of a complete K-deficiency (plants received K-free nutrition solution). In general, recently expanded leaves had the highest concentration of K, and imposition of K-stress at any stage of leaf expansion resulted in decreased K concentrations relative to control plants (10 millimolar K). A reduction in CER, relative to control plants, was only observed in leaves that expanded during the K-stress. Stomatal conductance also declined, but this was not the primary cause of the decrease in carbon fixation because internal CO2 concentration was unaffected by K-stress. Assimilate export rate from K-deficient leaves was reduced but relative export, calculated as a percentage of CER, was similar to control leaves. Over all the data, export rate was correlated positively with both CER and activity of sucrose phosphate synthase in leaf extracts. K-deficient leaves had higher concentrations of sucrose and hexose sugars. Accumulation of hexose sugars was associated with increased activities of acid invertase. Neutral invertase activity was low and unaffected by K-nutrition. It is concluded that decreased rates of assimilate export are associated with decreased activities of sucrose phosphate synthase, a key enzyme involved in sucrose formation, and that accumulation of hexose sugars may occur because of increased hydrolysis of sucrose in K-deficient leaves.  相似文献   

6.
Carbon partitioning in the leaves of Cucumis sativus L., a stachyose translocating plant, was influenced by the presence or absence of a single growing fruit on the plant. Fruit growth was very rapid with rates of fresh weight gain as high as 3.3 grams per hour. Fruit growth was highly competitive with vegetative growth as indicated by lower fresh weights of leaf blades, petioles, stem internodes and root systems on plants bearing a single growing fruit compared to plants not bearing a fruit. Carbon exchange rates, starch accumulation rates and carbon export rates were higher in leaves of plants bearing a fruit. Dry weight loss from leaves was higher at night from fruiting plants, and morning starch levels were consistently lower in leaves of fruiting than in leaves of vegetative plants indicating rapid starch mobilization at night from the leaves of fruiting plants. Galactinol, the galactosyl donor for stachyose biosynthesis, was present in the leaves of fruit-bearing plants at consistently lower concentration than in leaves of vegetative plants. Galactinol synthase, and sucrose phosphate synthase activities were not different on a per gram fresh weight basis in leaves from the two plant types; however, stachyose synthase activity was twice as high in leaves from fruiting plants. Thus, the lower galactinol pools may be associated with an activation of the terminal step in stachyose biosynthesis in leaves in response to the high sink demand of a growing cucumber fruit.  相似文献   

7.
The effect of low phosphate supply (low P) was determined on the diurnal changes in the rate of carbon export, and on the contents of starch, sucrose, glucose, and fructose 2,6-bisphosphate (F2,6BP) in leaves. Low-P effects on the activities of a number of enzymes involved in starch and sucrose metabolism were also measured. Sugar beets (Beta vulgaris L. cv. F58-554H1) were cultured hydroponically in growth chambers and the low-P treatment induced nutritionally. Low-P treatment decreased carbon export from the leaf much more than it decreased photosynthesis. At growth chamber photon flux density, low P decreased carbon export by 34% in light; in darkness, export rates fell but more so in the control so that the average rate in darkness was higher in low-P leaves. Low P increased starch, sucrose, and glucose contents per leaf area, and decreased F2, 6BP. The total extractable activities of enzymes involved in starch and sucrose synthesis were increased markedly by low P, e.g. adenosine 5-diphosphoglucose pyrophosphorylase, cytoplasmic fructose-1,6-bisphosphatase, uridine 5-diphosphoglucose pyrophosphorylase, and sucrose-phosphate synthase. The activities of some enzymes involved in starch and sucrose breakdown were also increased by low P. We propose that plants adapt to low-P environments by increasing the total activities of several phosphatases and by increasing the concentrations of phosphate-free carbon compounds at the expense of sugar phosphates, thereby conserving Pi. The partitioning of carbon among the various carbon pools in low-P adapted leaves appears to be determined in part by the relative capacities of the enzymes for starch and sucrose metabolism.  相似文献   

8.
To evaluate leaf carbon balance during rapid pod-fill in soybean (Glycine max [L.] Merrill), measurements were made of CO2 assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO2 assimilation and leaf dry matter accumulation. Chamber-grown `Amsoy 71' and `Wells' plants were subjected on the day of the measurements to one of six photosynthetic photon flux densities in order to vary CO2 assimilation rates.

Rate of accumulation of leaf dry matter and rate of export both increased as CO2 assimilation rate increased in each cultivar.

Starch concentrations were greater in Amsoy 71 than in Wells at all CO2 assimilation rates. At low CO2 assimilation rates, export rates in Amsoy 71 were maintained in excess of 1.0 milligram CH2O per square decimeter leaf area per hour at the expense of leaf reserves. In Wells, however, export rate continued to decline with decreasing CO2 assimilation rate. The low leaf starch concentration in Wells at low CO2 assimilation rates may have limited export by limiting carbon from starch remobilization.

Both cultivars exhibited positive correlations between CO2 assimilation rate and sucrose concentration, and between sucrose concentration and export rate. Carbon fixation and carbon partitioning both influenced export rate via effects on sucrose concentration.

  相似文献   

9.
Maize (Zea mays L. cv. Pioneer 3184) leaf elongation rate was measured diurnally and was related to diurnal changes in the activities of sucrose metabolizing enzymes and carbohydrate content in the elongating portion of the leaf. The rate of leaf elongation was greatest at midday (1300 hours) and was coincident with the maximum assimilate export rate from the distal portion of the leaf. Leaf elongation during the light period accounted for 70% of the total observed increase in leaf length per 24 hour period. Pronounced diurnal fluctuations were observed in the activities of acid and neutral invertase and sucrose phosphate synthase. Maximum activities of sucrose phosphate synthase and acid invertase were observed at 0900 hours, after which activity declined rapidly. The activity of sucrose phosphate synthase was substantially lower than that observed in maize leaf source tissue. Neutral invertase activity was greatest at midday (1200 hours) and was correlated positively with diurnal changes in leaf elongation rate. There was no significant change in the activity of sucrose synthase over the light/dark cycle. Sucrose accumulation rate increased during a period when leaf elongation rate was maximal and beginning to decline. Maximum sucrose concentration was observed at 1500 hours, when the activities of sucrose metabolizing enzymes were low. At no time was there a significant accumulation of hexose sugars. The rate of starch accumulation increased after the maximum sucrose concentration was observed, continuing until the end of the light period. There was no delay in the onset of starch mobilization at the beginning of the dark period, and essentially all of the starch was depleted by the end of the night. Mobilization of starch in the elongating tissue at night could account for a significant proportion of the calculated increase in the tissue dry weight due to growth. Collectively, the results suggested that leaf growth may be controlled by the activities of certain sucrose metabolizing enzymes and may be coordinated with assimilate export from the distal, source portion of the leaf. Results are discussed with reference to diurnal photoassimilation and export in the distal, source portion of the leaf.  相似文献   

10.
Carbon partitioning and export from mature cotton leaves   总被引:4,自引:0,他引:4       下载免费PDF全文
The partitioning of carbon in intact, mature cotton (Gossypium hirsutum L.) leaves was examined by steady-state 14CO2 labeling. Plants were exposed to dark periods of varying lengths, followed by similar illuminated labeling periods. These treatments produced leaves with a range of starch and soluble sugar contents, carbon exchange, and carbon export rates. Export during the illuminated periods was neither highly correlated with photosynthesis nor was export during the illuminated periods significantly different among the treatments. In contrast, the rate of subsequent nocturnal carbon export from these leaves varied widely and was found to be highly correlated with leaf starch content at the end of the illumination period (r = 0.934) and with nocturnal leaf respiration (r = 0.954). Leaves which had accumulated the highest levels of starch (about 275 micrograms per square centimeter) by the end of the illumination period exhibited nocturnal export rates very similar to those during the daylight hours. Leaves which accumulated starch to only 50 to 75 micrograms per square centimeter virtually ceased nocturnal carbon export. For leaves with starch accumulations of between 50 and 275 micrograms per square centimeter, nocturnal export was directly proportional to leaf starch at the end of the illumination period. After the nocturnal export rate was established, it continued at a constant rate throughout the night even though leaf starch and sucrose contents declined.  相似文献   

11.
Soybean (Glycine max L. Merr.) germplasm, essentially isogenic except for loci controlling male sterility (ms1) and nodulation (rj1), were developed to study the effects of reproductive development and nitrogen source on certain aspects of photosynthesis. Plants were sampled from flowering (77 days after transplanting) until maturity (150 days after transplanting). With all four genotypes, net carbon exchange rates were highest at flowering and declined thereafter. Photosynthetic rates of the sterile genotypes (nodulated and non-nodulated) declined more rapidly than the fertile genotypes, and after 105 days, both sterile genotypes maintained low but relatively constant carbon exchange rates (<3 milligrams CO2/gram fresh weight per hour). Photosynthetic rates and starch accumulation (difference between afternoon and morning levels) declined with time. The sterile genotypes attained the highest morning starch levels, which reflected reduced starch mobilization. After 92 days, the proportion of photosynthetically fixed carbon that was partitioning into starch (relative leaf starch accumulation) in the sterile genotypes increased dramatically. In contrast, relative leaf starch accumulation in the fertile genotypes remained relatively constant with time. Throughout the test period, all four genotypes maintained leaf sucrose levels between 5 and 15 micromoles glucose equivalents per gram fresh weight.

The activities of sucrose phosphate synthase (SPS) in leaf extracts of the four genotypes declined from 77 to 147 days. Nodulated genotypes tended to maintain higher activities (leaf fresh weight basis) than did the non-nodulated genotypes. In general, relative leaf starch accumulation was correlated negatively with the activity of SPS (normalized with leaf net carbon exchange rate) in leaf extracts for all four genotypes during early reproductive development, and for the fertile genotypes at all sampling dates. In contrast, leaf sucrose content was correlated positively with SPS activity during early reproductive development. These results suggested that a direct relation existed between the activity of SPS and starch/sucrose levels in soybean leaves. However, the interaction between these processes also may be influenced by other factors, particularly when leaf photosynthetic rates and plant demand for assimilates is low, as in the sterile genotypes.

  相似文献   

12.
Sources of Carbon for Export from Spinach Leaves throughout the Day   总被引:7,自引:3,他引:4       下载免费PDF全文
Rates of net carbon exchange, export, starch, and sucrose synthesis were measured in leaves of spinach (Spinacia oleracea L.) throughout a 14-hour period of sinusoidal light to determine the sources of carbon contributing to export. Net carbon exchange rate closely followed light level, but export remained relatively constant throughout the day. In the morning when photosynthesis was low, starch degradation provided most of the carbon for export, while accumulated sucrose was exported during the evening. At high photosynthesis rate, the regulatory metabolite fructose 2,6-bisphosphate was low, allowing more of the newly fixed carbon to flow to sucrose through cytosolic fructose bisphosphatase. When the rate of sucrose synthesis exceeded the rate of export from the leaf, sucrose accumulated and soon thereafter sucrose synthesis declined. A decreasing sucrose synthesis rate resulted in additional carbon moving to the synthesis of starch, which was maintained throughout the remainder of the day. The declining sucrose synthesis rate coincided with decreasing activity of sucrose phosphate synthase present in gel-filtered leaf extracts. A rise in the leaf levels of uridine diphosphoglucose and fructose 6-phosphate throughout the day was consistent with this declining activity.  相似文献   

13.
Experiments were conducted with vegetative soybean plants (Glycine max [L.] Merr., `Ransom') to determine whether the activities in leaf extracts of key enzymes in sucrose metabolism changed during the daily light/dark cycle. The activity of sucrose-phosphate synthase (SPS) exhibited a distinct diurnal rhythm, whereas the activities of UDP-glucose pyrophosphorylase, cytoplasmic fructose-1,6-bisphosphatase, and sucrose synthase did not. The changes in extractable SPS activity were not related directly to photosynthetic rates or light/dark changes. Hence, it was postulated that the oscillations were under the control of an endogenous clock. During the light period, the activity of SPS was similar to the estimated rate of sucrose formation. In the dark, however, SPS activity declined sharply and then increased even though degradation of starch was linear. The activity of SPS always exceeded the estimated maximum rate of sucrose formation in the dark. Transfer of plants into light during the normal dark period (when SPS activity was low) resulted in increased partitioning of photosynthate into starch compared to partitioning observed during the normal light period. These results were consistent with the hypothesis that SPS activity in situ was a factor regulating the rate of sucrose synthesis and partitioning of fixed carbon between starch and sucrose in the light.  相似文献   

14.
Photosynthesis, photosynthate partitioning into foliar starch, and translocation were investigated in soybean plants (Glycine max (L.) Merr. cv. Amsoy 71), grown under different photoperiods and photosynthetic periods to determine the controls of leaf starch accumulation. Starch accumulation rates in soybean leaves were inversely related to the length of the daily photosynthetic period under which the plants were grown. Photosynthetic period and not photoperiod per se appears to be the important factor. Plants grown in a 14-hour photosynthetic period partitioned approximately 60% of the daily foliar accumulation into starch whereas 7-hour plants partitioned about 90% of their daily foliar accumulation into starch. The difference in starch accumulation resulted from a change in photosynthate partitioning between starch and leaf residual dry weight. Residual dry weight is defined as leaf dry weight minus the weight of total nonstructural carbohydrates. Differences in photosynthate partitioning into starch were also associated with changes in photosynthetic and translocation rates, as well as with leaf and whole plant morphology. It is concluded that leaf starch accumulation is a programmed process and not simply the result of a limitation in translocation.  相似文献   

15.
In green leaves and a number of algae, photosynthetically derived carbon is ultimately converted into two carbohydrate end-products, sucrose and starch. Drainage of carbon from the Calvin cycle proceeds via triose phosphate, fructose 6-phosphate and glycollate. Gluconeogenesis in photosynthetic cells is controlled by light, inorganic phosphate and phosphorylated sugars. Light stimulates the production of dihydroxyacetone phosphate, the initial substrate for sucrose and starch synthesis, and inhibits the degradative pathways in the chloroplast. Phosphate inactivates reactions of synthesis and activates reactions of degradation. Among the phosphorylated sugars a special role is allocated to fructose 2,6-bisphosphate, which is present in the cytoplasm at very low concentrations and inhibits sucrose synthesis directly by inactivating pyrophosphatedependent phosphofructokinase. The synthesis of sucrose plays a central role in the partitioning of photosynthetic carbon. The cytoplasmic enzymes, fructose bisphosphate phosphatase and sucrose phosphate synthase are likely key points of regulation. The regulation is carried out by several effector metabolites. Fructose 2,6-bisphosphate is likely to be the main coordinator of the rate of sucrose synthesis, hence of photosynthetic carbon partitioning between sucrose and starch.Paper presented at the FESP meeting (Strasbourg, 1984)  相似文献   

16.
Transitions in carbohydrate metabolism and translocation rate were studied for evidence of control of export by the sugar beet (Beta vulgaris L. Klein E.) source leaf. Steady-state labeling was carried out for two consecutive 14-hour light periods and various quantities related to translocation were measured throughout two 24-hour periods. Starch accumulation following illumination was delayed. Near the end of the light period, starch stopped accumulating, whereas photosynthesis rate and sucrose level remained unchanged. At the beginning of the dark period there was a 75-minute delay before starch was mobilized. The rate of import to the developing sink leaves at night was similar to that during the day, whereas export decreased considerably at night.

Starch accumulation and degradation seemed to be initiated in response to the level of illumination. Cessation of starch accumulation before the end of the light period was initiated endogenously. Exogenous control appeared to be mediated by the level of sucrose in the source leaf while endogenous control seemed to be keyed to photoperiod or photosynthetic duration.

  相似文献   

17.
To evaluate daytime and nighttime carbon balance and assimilate export in soybean (Glycine max [L.] Merrill) leaves at different photon flux densities, rates of CO2 exchange, specific leaf weights, and concentrations of sucrose and starch were measured at intervals in leaves of pod-bearing `Amsoy 71' and `Wells II' plants grown in a controlled environment room. Assimilate export was estimated from CO2 exchange and change in specific leaf weight. Total diurnal assimilate export was similar for both cultivars. Large cultivar differences existed, however, in the partitioning of carbon into starch reserves and the relative amounts of assimilate exported during the day and the night. Total amounts of both daytime and nighttime export increased with increasing photon flux density, as did sucrose and starch concentrations, specific leaf weight, and rate of respiratory carbohydrate loss at night. Cultivar differences in nighttime rate of export were more closely related to the differences in amount of assimilate available at the end of the day than to differences in daytime rate of net CO2 assimilation. Daytime rates of export, however, were closely related to daytime rates of net CO2 assimilation within each cultivar. The total amount of starch depleted during the 10-hour night increased as starch concentration at the beginning of the night increased.  相似文献   

18.
High irradiance-acclimated soybean leaves had the same CO2 exchange rates, but lower starch accumulation rates and correspondingly higher translocation rates than unacclimated leaves. Increased translocation rates were associated with increased sucrose phosphate synthetase (EC 2.4.1.14) activity. Foliar sucrose levels and adenosine diphosphate-glucose pyrophosphorylase (EC 2.7.7.9) activity were unaffected. Carbon assimilation, partitioning, and enzyme activity of unacclimated leaves were unaltered even after a second day's exposure to high irradiance. Results are consistent with the hypothesis that photosynthate partitioning between starch synthesis and sucrose translocation are controlled in part by the rate of sucrose synthesis.  相似文献   

19.
Excision of spinach (Spinacia oleracea L.) leaves had no effect on photosynthetic rates, but altered normal carbon partitioning to favor increased formation of starch and decreased formation of sucrose. The changes were evident within 2 hours after excision. Concurrently, leaf fructose-2,6-bisphosphate content increased about 5-fold (from 0.1 to 0.5 nanomoles per gram fresh weight). The activities of sucrose-P synthase and cytoplasmic fructose 1,6-bisphosphatase in leaf extracts remained constant during the time period tested. It is postulated that the rise in fructose 2,6-bisphosphate was responsible for the change in carbon partitioning.  相似文献   

20.
A mutant of Arabidopsis thaliana (L.) Heynh. which lacks leaf starch was isolated by screening for plants which did not stain with iodine. The starchless phenotype, confirmed by quantitative enzymic analysis, is caused by a single recessive nuclear mutation which results in a deficiency of the chloroplast isozyme of phosphoglucomutase. When grown in a 12-h photoperiod, leaves of the wild-type accumulated substantial amounts of starch but lower levels of soluble sugars. Under these conditions, the mutant accumulated relatively high levels of soluble sugars. Rates of growth and net photosynthesis of the mutant and wild-type were indistinguishable when the plants were grown in constant illumination. However, in a short photoperiod, the growth of the mutant was severely impaired, the rate of photosynthesis was depressed relative to the wild-type, and the rate of dark respiration, which was high following the onset of darkness, exhibited an uncharacteristic decay throughout the dark period. The altered control of respiration by the mutant, which may be related to the relatively high levels of soluble carbohydrate that accumulate in the leaf and stem tissue, is believed to be partially responsible for the low growth rate of the mutant in short days. The depressed photosynthetic capacity of the mutant may also reflect a metabolic adaptation to the accumulation of high levels of soluble carbohydrate which mimics the effects of alterations in source/sink ratio. The activities of sucrose phosphate synthase and acid invertase are significantly higher in the mutant than in the wild-type whereas ADP-glucose pyrophosphorylase activity is lower. This suggests that the activities of these enzymes may be modulated in response to metabolite concentrations or flux through the pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号