首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two 5S genes are expressed in chicken somatic cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
E Lazar  B Haendler    M Jacob 《Nucleic acids research》1983,11(22):7735-7741
Two 5S RNA species were detected in chicken cells. 5S I RNA has the nucleotide sequence of chicken 5S RNA previously published by Brownlee et al. (1) and 5S II RNA differs from it by 10 mutations. The secondary structure of both species is compatible with that proposed for other eukaryotic 5S RNAs. 5S II RNA represents 50-60% of 5S I RNA. Both species were found in total chicken liver and brain and were present in polysomes in the same relative proportions. Only one 5S RNA species could be detected in rat liver and HeLa cells. Chicken is the first vertebrate described so far in which two 5S RNA genes are expressed in somatic cells.  相似文献   

2.
In order to further characterize the previously observed disruptive effect of the RNA polymerase I promoter sequence (Pol I) from Acanthamoeba castellanii on tandemly repeated 5S rDNA positioning sequences from sea urchin (Lytechinus variegatus), we compared the histone-binding ability of the isolated 199-bp Pol I promoter region to that of the 208-bp 5S rDNA and that of nucleosome core particle sequences isolated from chicken erythocytes. We found the 5S rDNA positioning sequence to be more efficient at forming nucleosomes than the RNA polymerase I promoter sequence. Nevertheless, examination of the free-DNA half-depletion points during the titrations suggested that twice as much histone had bound to RNA polymerase I promoter sequence as to the 5S nucleosome-positioning or core particle sequences. DNA bending analysis suggested two potential DNA bending loci in the RNA polymerase I promoter, whereas only one such locus was predicted for the 5S positioning sequence. Such mixed bending signals on the RNA polymerase I promoter could favor non-nucleosomal deposition of histones on these sequences.  相似文献   

3.
RNA sequence relatedness among avian RNA tumor virus genomes was analyzed by inhibition of DNA-RNA hybrid formation between 3H-labeled 35S viral RNA and an excess of leukemic or normal chicken cell DNA with increasing concentrations of unlabeled 35S viral RNA. The avian viruses tested were Rous associated virus (RAV)-3, avian myeloblastosis virus (AMV), RAV-60, RAV-61, and B-77 sarcoma virus. Hybridization of 3H-labeled 35S AMV RNA with DNA from normal chicken cells was inhibited by unlabeled 35S RAV-0 RNA as effeciently (100%) as by unlabeled AMV RNA. Hybridization between 3H-labeled 35S AMV RNA and DNA from leukemic chicken myeloblasts induced by AMV was suppressed 100 and 68% by unlabeled 35S RNA from AMV and RAV-0, respectively. Hybridization between 3H-labeled RAV-0 and leukemic chicken myeloblast DNA was inhibited 100 and 67% by unlabeled 35S RNA from RAV-0 and AMV, respectively. It appears therefore that the AMV and RAV-0 genomes are 67 to 70% homologous and that AMV hybridizes to RAV-0 like sequences in normal chicken DNA. Hybridization between AMV RNA and leukemic chicken DNA was inhibited 40% by RNA from RAV-60 or RAV-61 and 50% by B-77 RNA. Hybridization between RAV-0 RNA and leukemic chicken DNA was inhibited 80% by RAV-60 or RAV-61 and 70% by B-77 RNA. Hybridization between 3H-labeled 35S RNA from RAV-60 or RAV-61 and leukemic chicken myeloblast DNA was reduced equally by RNA from RAV-60, RAV-61, AMV or RAV-0; this suggests that RNA from RAV-60 and RAV-61 hybridizes with virus-specific sequences in leukemic DNA which are shared by AMV, RAV-0, RAV-60, and RAV-61 RNA'S. Hybridization between 3H-labeled 35S RNA from RAV-61 and normal pheasant DNA was inhibited 100% by homologous viral RNA, 22 TO 26% BY RNA from AMV or RAV-0, and 30 to 33% by RNA from RAV-60 or B-77. Nearly complete inhibition of hybricization between RAV-0 RNA and leukemic chicken DNA by a mixture of AMV and B-77 35S RNAs indicates that the RNA sequences shared by B-77 virus and RAV-0. It appears that different avian RNA tumor virus genomes have from 50 to 80% homology in nucleotide sequences and that the degree of hybridization between normal chicken cell DNA and a given viral RNA can be predicted from the homology that exists between the viral RNA tested and RAV-0 RNA.  相似文献   

4.
We have determined the DNA sequence of a 770 by Pst I fragment containing 450 nucleotides of the 5′ flanking region of the chicken lysozyme gene. S1-nuclease mapping was performed to localize the 5′ end of nuclear RNA containing lysozyme-specific sequences and of the mRNA. We present evidence that the 5′ noncoding region of the chicken lysozyme mRNA is heterogeneous in length. The 5′ termini of the different mRNAs map 29, 31 and 53 nucleotides upstream from their common initiation codon. The 5′ ends of lysozyme-specific nuclear RNAs map at positions similar to that of the mRNA. AT-rich regions and sequences similar to the E. coli RNA polymerase recognition sequence are found around 30 and 70 nucleotides upstream from each of these 5′ termini. The AT-rich regions differ, however, from the canonical Goldberg-Hogness box in that they do not contain the extremely conserved TATA sequence motif. Sequence comparison at the 5′ end of the lysozyme, conalbumin and ovalbumin genes reveals only one region of partial homology, 140 nucleotides upstream from the mRNA start sites.  相似文献   

5.
The polyribosomal fraction from chicken embryo fibroblasts infected with B77 avian sarcoma virus contained 38S, 28S, and 21S virus-specific RNAs in which sequences identical to the 5'-terminal 101 bases of the 38S genome RNA were present. The only polyadenylic acid-containing RNA species with 5' sequences which was detectable in purified virions had a sedimentation coefficient of 38S. This evidence is consistent with the hypothesis that a leader sequence derived from the 5' terminus of the RNA is spliced to the bodies of the 28S and 21S mRNA's, both of which have been shown previously to be derived from the 3' terminal half of the 38S RNA. The entire 101-base 5' terminal sequence of the genome RNA appeared to be present in the majority of the subgenomic intracellular virus-specific mRNA's, as established by several different methods. First, the extent of hybridization of DNA complementary to the 5'-terminal 101 bases of the genome to polyadenylic acid-containing subgenomic RNA was similar to the extent of its hybridization to 38S RNA from infected cells and from purified virions. Second, the fraction of the total cellular polyadenylic acid-containing RNA with 5' sequences was similar to the fraction of RNA containing sequences identical to the extreme 3' terminus of the genome RNA when calculated by the rate of hybridization of the appropriate complementary DNA probes. This suggests that most intracellular virus-specific RNA molecules contain sequences identical to those present in the 5'-terminal 101 bases of the genome. Third, the size of most of the radioactively labeled DNA complementary to the 5'-terminal 101 bases of the genome remained unchanged after the probe was annealed to either intracellular 38S RNA or to various size classes of subgenomic RNA and the hybrids were digested with S1 nuclease and denatured with alkali. However, after this procedure some DNA fragments of lower molecular weight were present. This was not the case when the DNA complementary to the 5'-terminal 101 bases of the genome was annealed to 38S genome RNA. These results suggest that, although the majority of the intracellular RNA contains the entire 101-base 5'-terminal leader sequence, a small population of virus-specific RNAs exist that contain either a shortened 5' leader sequence or additional splicing in the terminal 101 bases.  相似文献   

6.
Identification of a cytidine-specific ribonuclease from chicken liver   总被引:20,自引:0,他引:20  
Rapid RNA sequencing technology was used to determine if the base specificities of an RNase recently purified from chicken liver would prove useful for RNA sequence analysis. Escherichia coli 5 S [5'-32P]rRNA or yeast 5.8 S [5'-32P]rRNA was digested with the enzyme and this digest, along with digests derived from RNases of known specificity (U2, T1, T2) were subjected to electrophoresis through denaturing polyacrylamide slab gels. Following autoradiography, the banding patterns arising from the activity of each enzyme were compared, and the base specificity of the unknown RNase was established. The chicken liver RNase was found to have a marked preference for phosphodiester bonds containing cytidylic acid residues, a property which should make the enzyme useful for distinguishing between pyrimidines in RNA sequencing.  相似文献   

7.
Defective-interfering (DI) particles are helper-dependent deletion mutants which interfere specifically with the replication of the homologous standard virus. Serial passaging of alphaviruses in cultured cells leads to the accumulation of DI particles whose genomic RNAs are heterogeneous in size and sequence composition. In an effort to examine the sequence organization of an individual DI RNA species generated from Sindbis virus, we isolated and sequenced a representative cDNA clone derived from a Sindbis DI RNA population. Our data showed that: (i) the 3' end of the DI RNA template was identical to the 50 nucleotides at the 3' end of the standard RNA; (ii) the majority (75%) of the DI RNA template was derived from the 1,200 5'-terminal nucleotides of the standard RNA and included repeats of these sequences; and (iii) the 5' end of the DI RNA template was not derived from the standard RNA, but is nearly identical to a cellular tRNAAsp (S. S. Monroe and S. Schlesinger, Proc. Natl. Acad. Sci. U.S.A. 80:3279-3283, 1983). We have also utilized restriction fragments from cloned DNAs to probe by blot hybridization for the presence of conserved sequences in several independently derived DI RNA populations. These studies indicated that: (i) a 51-nucleotide conserved sequence located close to the 5' end of several alphavirus RNAs was most likely retained in the DI RNAs; (ii) the junction region containing the 5' end of the subgenomic 26S mRNA was deleted from the DI RNAs; and (iii) the presence of tRNAAsp sequences was a common occurrence in Sindbis virus DI RNAs derived by passaging in chicken embryo fibroblasts.  相似文献   

8.
9.
Following a search of sequence data bases for intronic sequences exhibiting structural features typical of snoRNAs, we have positively identified by Northern assays and sequence analysis another intron-encoded snoRNA, termed U21. U21 RNA is a 93 nt. long, metabolically stable RNA, present at about 10(4) molecules per HeLa cell. It is encoded in intron 5 of the ribosomal protein L5 gene, both in chicken and in the two mammals studied so far, human and mouse. U21 RNA is devoid of a 5'-trimethyl-cap and is likely to result from processing of intronic RNA. The nucleolar localization of U21 has been established by fluorescence microscopy after in situ hybridization with digoxigenin-labeled oligonucleotide probes. Like most other snoRNAs U21 contains the box C and box D motifs and is precipitated by anti-fibrillarin antibodies. By the presence of a typical 5'-3' terminal stem, U21 appears more particularly related to U14, U15, U16 and U20 intron-encoded snoRNAs. Remarkably, U21 contains a long stretch (13 nt.) of complementarity to a highly conserved sequence in 28S rRNA. Sequence comparisons between chicken and mammals, together with Northern hybridizations with antisense oligonucleotides on cellular RNAs from more distant vertebrates, point to the preferential preservation of this segment of U21 sequence during evolution. Accordingly, this complementarity, which overlaps the complementarity of 28S rRNA to another snoRNA, U18, could reflect an important role of U21 snoRNA in the biogenesis of large ribosomal subunit.  相似文献   

10.
11.
The nucleotide sequence of the 5S ribosomal RNA of Streptococcus cremoris has been determined. The sequence is 5' (sequence in text) 3'. Comparison of the S. cremoris 5S RNA sequence to an updated prokaryotic generalized 5S RNA structural model shows that this 5S RNA contains some unusual structural features. These features result largely from uncommon base substitutions in helices I, II and IV. Some of these unusual structural features are shared by several of the known 5S RNA sequences from mycoplasmas. However, the characteristic bloc of deletions found in helix V of these mycoplasma 5S RNAs is not present in the 5S RNA of S. cremoris.  相似文献   

12.
13.
Two low-molecular-weight RNAs are associated with the 70S RNA complex of Rous sarcoma virus: a previously described 4S RNA and a newly identified 5S RNA. The 4S RNA constitutes 3 to 4% of the 70S RNA complex or the equivalent of 12 to 20 molecules per 70S RNA. It exhibits a number of structural properties characteristic of transfer RNA as revealed by two-dimensional electrophoresis of oligonucleotides obtained from a T1 ribonuclease digest of the 4S RNA species. The 5S RNA is approximately 120 nucleotides in length, constitutes 1% of the 70S RNA complex or the equivalent of 3 to 4 molecules per molecules of 70S RNA, and is identical in nucleotide composition and structure to 5S RNA from uninfected chicken embryo fibroblasts. Melting studies indicate that the 5S RNA is released from the 70S RNA complex at the same temperature required to dissociate 70S RNA into its constituent 35S subunits. In contrast, greater than 80% of the 4S RNA is released from 70S RNA prior to its conversion into subunits. The possible biological significance of these 70S-associated RNAs is discussed.  相似文献   

14.
15.
16.
The complete nucleotide sequence of the coding region of the chicken carbonic anhydrase II (CA II) gene has been determined from clones isolated from a chicken genomic library. The sequence of a nearly full length chicken CA II cDNA clone has also been obtained. The gene is approximately 17 kilobase pairs (kb) in size and codes for a protein that is comprised of 259 amino acid residues. The 5' flanking region contains consensus sequences commonly associated with eucaryotic genes transcribed by RNA polymerase II. Six introns ranging in size from 0.3 to 10.2 kb interrupt the gene. The number of introns as well as five of the six intron locations are conserved between the chicken and mouse CA II genes. The site of the fourth intron is shifted by 14 base pairs further 3' in the chicken and thus falls between codons 147 and 148 rather than within codon 143 as in the mouse gene. Measurements of CA II RNA levels in various cell types suggest that CA II RNA increases in parallel with globin RNA during erythropoiesis and exists only at low levels, if at all, in non-erythroid cells.  相似文献   

17.
鸡端粒酶RNA基因的克隆   总被引:1,自引:0,他引:1  
本研究采用扩增条件优化的PCR扩增技术,以MDCC-MSBl细胞基因组DNA为模板扩增出鸡端粒酶RNA(chicken telomerase RNA,chTR)全长基因,克隆到pMD18-T载体中,经酶切鉴定和PCR鉴定后测定序列.序列分析表明所克隆的鸡端粒酶RNA基因全长465 bp,其中模板区的11个核苷(5'-CUAACCCUAAU-3')合成端粒亚单位(TTAGGG)n.chTR基因的克隆为进一步研究chTR在马立克氏病发病过程中的作用以及马立克氏病的发病机制提供可能的序列基础.  相似文献   

18.
19.
Spinacia oleracia cholorplast 5S ribosomal RNA was end-labeled with [32P] and the complete nucleotide sequence was determined. The sequence is: pUAUUCUGGUGUCCUAGGCGUAGAGGAACCACACCAAUCCAUCCCGAACUUGGUGGUUAAACUCUACUGCGGUGACGAU ACUGUAGGGGAGGUCCUGCGGAAAAAUAGCUCGACGCCAGGAUGOH. This sequence can be fitted to the secondary structural model proposed for prokaryotic 5S ribosomal RNAs by Fox and Woese (1). However, the lengths of several single- and double-stranded regions differ from those common to prokaryotes. The spinach chloroplast 5S ribosomal RNA is homologous to the 5S ribosomal RNA of Lemna chloroplasts with the exception that the spinach RNA is longer by one nucleotide at the 3' end and has a purine base substitution at position 119. The sequence of spinach chloroplast 5S RNA is identical to the chloroplast 5S ribosomal RNA gene of tobacco. Thus the structures of the chloroplast 5S ribosomal RNAs from some of the higher plants appear to be almost totally conserved. This does not appear to be the case for the higher plant cytoplasmic 5S ribosomal RNAs.  相似文献   

20.
Previous work demonstrated that the rabbit smooth muscle myosin heavy chain gene showed sequence divergence at the 25kDa/50kDa junction of the S1 subfragment when compared to chicken gizzard and chicken epithelial nonmuscle myosin. RNase protection analysis with a probe spanning this region detected two partially protected fragments which were not present in RNA from vascular tissue and only found in RNA from visceral tissue. The polymerase chain reaction was used to amplify a 162bp product from primers spanning the putative region of divergence and DNA sequence analysis revealed a seven amino acid insertion not previously detected in other characterised cDNA clones. RNase protection analysis using the PCR product as probe showed that the inserted sequence was expressed exclusively in RNA from visceral tissue. Similar RNA analysis showed that the visceral isoform was not expressed in 20 day fetal rabbit smooth muscle tissues. These results indicated that the new visceral isoform was expressed in a tissue-specific and developmentally regulated manner. Genomic DNA sequencing and mapping of the exon-intron boundaries showed that the visceral isoform was the product of cassette-type alternative splicing. The inclusion of a visceral-specific sequence near the Mg-ATPase domain and at the 25kDa/50kDa junction suggests that the visceral isoform may be important for myosin function in smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号