首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The endocrine pancreas of the Australian lungfish,Neoceratodus forsteri, was investigated immunocytochemically for the presence of polypeptide hormone-producing cells. Three cell types were identified, namely insulin-, glucagon-, and somatostatin-immunoreactive elements. The insulin cells are confined solely to the center of the islets. Glucagon and somatostatin cells are distributed peripherally around the central mass of the insulin cells. Isolated cells or clusters of glucagon and somatostatin cells are also dispersed within the exocrine parenchyma. The immunoreactive cell types are compared with those staining with standard histological procedures. The spatial relationships of the different cell populations are examined.  相似文献   

2.
Summary Light-microscopic immunohistochemistry was used to localize insulin- and somatostatin-immunoreactive cells within developing endocrine pancreatic tissue of metamorphosing lampreys, Petromyzon marinus. The extrahepatic common bile duct and a portion of the intrahepatic bile duct develop into the caudal portion of the endocrine pancreas. The cranial pancreas is composed of follicles originating in the intestinal and diverticular epithelia, thus following the method of formation of pancreatic follicles from gut epithelium in larvae. In both the cranial and caudal portions, and in an intermediate cord of isolated follicles which connect these two major masses, insulin-immunoreactive cells appear first and are followed by cells showing somatostatin-immunoreactivity. In all stages of metamorphosis individual endocrine cells demonstrate immunoreactivity to a single hormone. Biliary atresia in lamprey may have some adaptive significance in providing cells that produce a caudal endocrine pancreas.Supported by NSERC of Canada grant No. A5945 and MRC of Canada grant No. MA8629 to JHY  相似文献   

3.
Summary Ablation, transplantation and culture experiments were used to determine the respective roles of the pancreatic dorsal and ventral anlagen in the formation of the endocrine cells. Three successive waves of endocrine formation occur in the pancreas of Bufo bufo at three developmental stages (III6, IV1 and IV2). Each wave is derived from a different source: the first originates from the dorsal anlage, the second from the exocrine tissue of the cortex of the pancreas and the third from the pancreatic duct. Each generation of islets has a specific composition of different cell types. The first wave is only composed of insulin islets; the second wave gives rise to single insulin, glucagon and somatostatin cells; while the third wave generates single cells synthesizing one of the three hormones, homogeneous islets of insulin cells, rare glucagon islets and heterogeneous islets containing insulin cells in the centre and a few glucagon or somatostatin cells at the periphery.  相似文献   

4.
Summary A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells.In mouse about 13 GEP endocrine cell types are distinguished 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. -endorphin-, 13. serotonin-immunoreactive cells.Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1–9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells.Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonlus. In mouse pancreas and fish gut, endocrine cells showing only PP-or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells, showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-1-gastrin-and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed.Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.In honour of Prof. P. van Duijn  相似文献   

5.
The morphology and topographic distribution of somatostatin-immunoreactive cells in the stomach and small intestine of the frog Rana esculenta were studied at the light-microscopic level by the use of the peroxidase-antiperoxidase method. Scattered immunostained cells occurred in all regions of the gastrointestinal tract investigated. In the small intestine, the number of these cells decreased gradually in the oral to anal direction, i.e. from the pyloric (antral) stomach to the entrance into the colon. Most of the immunostained cells possessed thick, short cytoplasmic processes, which did not display a preferential spatial orientation. Other somatostatin-immunoreactive cells, which were exclusively located in the small intestine, gave rise to a single long extension oriented toward the lumen. In both stomach and small intestine, a complete penetration of the epithelial surface by these processes of somatostatin-immunoreactive cells was observed only occasionally. The morphological features of the somatostatin-immunostained cells speak in favor of endocrine, paracrine, and possibly also intraluminal secretory functions of the enteroendocrine somatostatin system in frogs.Fellow of the Alexander von Humboldt Foundation, Bonn, Germany  相似文献   

6.
Summary In Bufo bufo at stage III6 the first endocrine islets appear in the part of the pancreas corresponding to the dorsal anlage. At stage IV2, 5 days later, the pancreatic duct develops and new islets arise by budding off from the ductal epithelium. The ultrastructural study of the secretory granules morphology of endocrine cells has distinguished four different cell types: B-cells (stage III9), A-cells (stage IV3), D-cells (stage IV3) and a fourth type not yet identified (stage IV3). By immunocytology insulin and corticotropin-releasing factor (CRF) cells have been demonstrated at stage III9, and glucagon and somatostatin cells at stage IV1. Lastly, endocrine islets can be homogeneous (predominantly containing insulin cells, rarely glucagon cells) or heterogeneous (insulin cells at the centre and glucagon or somatostatin cells at the periphery). Hypotheses are put forward for the origin and the constitution of the different generations of endocrine islets and isolated cells.  相似文献   

7.
To determine the origin of the ventral pancreas, a fate map of the ventral pancreas was constructed using DiI crystal or CM-DiI to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. First, the region lateral to the 7- to 9-somite level, which has been reported to contribute to the ventral pancreas, was shown to contribute mainly to the intestine or the dorsal pancreas. At the 10 somite stage (ss), the ventral pre-pancreatic cells reside laterally at the 2-somite level, at the lateral boarder of the somite. At this stage, however, the fate of these cells has not yet segregated and they contribute to the ventral pancreas and to the intestine or bile duct. The ventral pancreas fate segregated at the 17 ss; the cells residing at the somite boarder at the 4-somite level at the 17 ss were revealed to contribute to the ventral pancreas. Interestingly, the dorsal and the ventral pancreatic buds are different in both origin and function. These two pancreatic buds begin to fuse at day 7 (HH 30) of embryonic development. However, whereas the dorsal pancreas gives rise to both Insulin-expressing endocrine and Amylase-expressing exocrine cells, the ventral pancreas gives rise to Amylase-expressing exocrine cells, but not insulin-expressing endocrine cells before day 7 (HH 30) of embryonic development.  相似文献   

8.
Cannabinoids participate in the modulation of numerous functions in the human organism, increasing the sense of hunger, affecting carbohydrate and lipid metabolism, and controlling systemic energy balance mechanisms. Moreover, they influence the endocrine system functions, acting via two types of receptors, CB1 and CB2. The aim of the present study was to examine the number, distribution and activity of ghrelin and somatostatin producing endocrine cells in the pancreas of rats after a single administration of selective CP 55,940 agonist of CB1 receptor. The study was performed on 20 rats. Neuroendocrine cells were identified by immunohistochemical reactions, involving specific antibodies against ghrelin and somatostatin. The distribution and number of ghrelin- and somatostatin-immunoreactive cells were separately studied in five pancreas islets of each section. A performed analysis showed a decreased number of somatostatin-immunoreactive cells and a weak immunoreactivity of ghrelin and somatostatin containing neuroendocrine cells in the pancreatic islets of experimental rats, compared to control animals. The obtained results suggest that a single administration of a selective CP 55,940 agonist of CB1 receptor influences the immunoreactivity of endocrine cells with ghrelin and somatostatin expression in the pancreas islets.  相似文献   

9.
Summary The endocrine pancreas of the grass lizard, Mabuya quinquetaeniata, and of the desert lizard, Uromastyx aegyptia, was investigated histologically and immunohistochemically. In both lizard species four cell types were observed in the endocrine pancreas, namely insulin (B), glucagon (A), somatostatin (D) and pancreatic polyeptide (PP) cells. In both species the B, A and D cells could be detected by their cross-reactivity with antisera raised against mammalian insulin, glucagon and somatostatin. However, these cells showed different tinctorial properties in the two lizard species. In both species the endocrine tissues were concentrated in the splenic lobe of the pancreas. In the grass lizard the endocrine tissue in the splenic lobe consisted mainly of B, A and D cells and in the ventral lobe the major cell types were PP and D cells. In the desert lizard, on the other hand, the frequency and the pattern of orientation of B, A and D cells were the same in both the splenic and the ventral lobes, but PP cells in the ventral lobe outnumbered those of the splenic lobe. The PP and D cells scattered in the exocrine parenchyma and the long protrusions which they exhibited suggested that these cells exerted paracrine control on the acinar cells. It is speculated that this control by PP cells may be trophic and by D cells inhibitory.  相似文献   

10.
Summary Immunohistochemistry was used to localize regulatory peptides in endocrine cells and nerve fibres in the pancreas of two species of elasmobranchs (starry ray,Raja radiata and spiny dogfish,Squalus acanthias), and in the Brockmann bodies of four teleost species (goldfish,Carassius auratus, brown troutSalmo trutta, rainbow trout,Oncorhynchus mykiss and cod,Gadus morhua). In the elasmobranchs, the classical pancreatic hormones somatostatin, glucagon and insulin were present in endocrine cells of the islets. In addition, endocrine cells were labelled with antisera to enkephalins, FMRF-amide, gastrin/cholecystokinin-(CCK)/caerulein, neurotensin, neuropeptide Y (NPY), and peptide YY (PYY). Nerve fibres were demonstrated with antisera against bombesin, galanin and vasoactive intestinal polypeptide (VIP). These nerve fibres innervated the walls of blood vessels, in the exocrine as well as the endocrine tissue. In the four teleost species immunoreactivity to somatostatin, insulin and glucagon was intense in the Brockmann bodies. Cells were labelled with antisera to enkephalin, neurotensin, FMRFamide, gastrin/CCK/ caerulein, NPY, PYY and VIP. Only a few nerve fibres were found with antisera against dopamine--hydroxylase (DBH, cod), enkephalin (met-enkephalin-Arg-Phe, cod), bombesin (cod), gastrin/CCK/caerulein (cod) and VIP. Galanin-like-immunoreactive fibres were numerous in the Brockmann bodies of all teleosts examined. Immunoreactivity to calcitonin gene-related peptide (CGRP), substance P, tyrosine hydroxylase (TH), and phenyl-N-methyl transferase (PNMT) could not be found in any of the species studied.  相似文献   

11.
Summary The pancreas of the axolotl, Ambystoma mexicanum, was investigated by immunocytochemical methods for the presence of immunoreactivity to a number of antisera raised against mammalian insulins. All anti-insulin antisera tested revealed substantial amounts of reaction products confined solely to the aldehyde-fuchsinophilic B cells of the endocrine pancreas. The reactive cell population was detected by use of one polyclonal antiserum against bovine insulin and eight different monoclonal antibodies against insulins from various mammalian species. Six of these antibody clones have known specificity to sub-regions of the insulin molecule. Additionally, fractions of an ethanol-HCl extract of pancreatic tissue from Ambystoma was studied in both conventional dot-blot tests by means of the same panel of antibodies and a two-site sandwich time-resolved immunofluorometric assay for human insulin involving two of the monoclonal antibodies. These experiments support the immunocytochemical observations by demonstrating the existence of an insulin-related peptide with a great deal of structural resemblance to mammalian insulins and displaying antigenic determinants in common at least with the amino acid residues A8–10 and B26–30. In conclusion, we interpret the findings as indicating that the immunocytochemically revealed tissue bound antigen in the Ambystoma pancreatic B-cells may be a peptide related to human insulin.Supported in part by SNF grant 11-5082 (G.N.H.). The authors are indebted to Dr. P. Rosenkilde for the gift of the Ambystoma material  相似文献   

12.
A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells. In mouse about 13 GEP endocrine cell types are distinguished: 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. beta-endorphin-, 13. serotonin-immunoreactive cells. Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1-9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells. Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonius. In mouse pancreas and fish gut, endocrine cells showing only PP- or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-t-gastrin- and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed. Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.  相似文献   

13.
Pancreatic endocrine cells were examined by light and electron microscopic immunocytochemistry to discuss the co-localization of peptides in one cell type. A cells were irregular in shape with an occasional long cytoplasmic process, and contained glucagon-immunoreactive granules with various contours. These granules were 160-300nm in diameter with various density, and also immunoreactive to anti-human pancreatic polypeptide (PP) serum. A part of them were further immunoreactive to anti-somatostatin serum. B cells were round to elliptical in shape, and often aggregated around the capillaries. Granules of B cells were round to irregular in shape, 270-410 nm in diameter, and immunoreactive to anti-insulin serum. D cells were irregular in shape with meager cytoplasm, and contained somatostatin-immunoreactive granules. These granules were ovoid or teardrop in shape, 140-250nm in longitudinal diameter, and immunoreactive to both anti-somatostatin and anti-human PP sera. PP cells were round to spindle-shaped, and contained human PP-immunoreactive round granules 150-35nm in diameter. These findings reveal the existence of at least 4 types of endocrine cells secreting glucagon, insulin, somatostatin, and PP, respectively, in the newt pancreas, and suggest the co-localization of some of these peptides in one cell type.  相似文献   

14.
Summary The endocrine pancreas of the Australian fattailed dunnart, Sminthopsis crassicaudata, was investigated by means of electron-microscopic immunocytochemistry using the protein A-gold technique on London resin (LR) white-embedded tissue. The primary antibodies used were raised against insulin, glucagon, somatostatin and pancreatic polypeptide. The morphology of the secretory granules differed in the four cell types. The insulin cells are pleomorphic, and the secretory granules composed of an electron-dense core surrounded by an electron-lucen halo. The glucago cells possess granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells have large, less dense secretory granules. The pancreatic polypeptide cells show small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborated by immunocytochemical data at the light-or preferably electron-microscopic level. Recent developments in immuno-electron-microscopic techniques have contributed to a better knowledge of cells responsible for the secretion of a wide variety of hormones, as in this study.  相似文献   

15.
Summary The endocrine pancreas of the grey kangaroo,Macropus fuliginosus, was investigated by means of immunocytochemistry using the PAP method on the same section at the light- and electron-microscopic levels. Semithin plastic sections were stained individually with primary antibodies for insulin, glucagon, somatostatin and pancreatic polypeptide (PP), and then photographed. Sections were osmicated, re-embedded in BEEM capsules, and ultrathin sections made and examined. The same labelled cells as in the semithin sections were localised in the thin sections, photographs taken and the morphology of secretory granules studied. The insulin cells were pleomorphic; their secretory granules displayed an electron-dense core surrounded by an empty halo. The glucagon cells possessed granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells had larger, less dense secretory granules. The PP cells showed small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborted by correlated immunocytochemical data at the light-and electron-microscopic levels.  相似文献   

16.
Ku SK  Lee JH  Lee HS 《Tissue & cell》2000,32(1):58-65
The distributions and relative frequencies of insulin-, glucagon- and somatostatin-immunoreactive cells were studied in dorsal, ventral, third and splenic lobes of developing chicken pancreas during embryonic periods (10 days of incubation to hatching) by immunohistochemical methods. The regions of pancreas were subdivided into three regions: exocrine, light and dark islet. Round, oval and spherical shaped immunoreactive cells were detected in all four lobes. According to developmental stages, the types of lobes and the regions of pancreas showed various distributions and relative frequencies. In the splenic lobes, insulin, glucagon and somatostatin-immunoreactive cells were detected in exocrine, dark islet and light islet from time differentiation of splenic lobes, 13 days of incubation. The insulin- and somatostatin-immunoreactive cells of the third lobes were detected in exocrine and light islets from 10 days of incubation, and in dark islets from 15 and 11 days of incubation respectively. Glucagon-immunoreactive cells were detected in exocrine, dark and light islets from 16, 11 and 19 days of incubation respectively. These immunoreactive cells of the ventral lobes were detected in exocrine and light islets. However, dark islets were not found in this lobe. Insulin-immunoreactive cells were demonstrated from 10 days of incubation in these two regions. Glucagon-immunoreactive cells were detected from 17 days of incubation in exocrine and 16 days of incubation in the light islets. Somatostatin-immunoreactive cells were demonstrated from 11 days of incubation in exocrine and 14 days of incubation in the light islets. In the dorsal lobes, insulin-immunoreactive cells were demonstrated in exocrine, dark and light islets from 12, 14, and 13 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were detected in dark and light islets from 13 and 14 days of incubation, respectively. Glucagon- and somatostatin-immunoreactive cells were demonstrated from 10 and 11 days of incubation in exocrine respectively. Generally, insulin-immunoreactive cells were increased in light islets but decreased in light islets with developmental stages. However, glucagon-immunoreactive cells were decreased in light islets but increased in dark islets. In addition, somatostatin-immunoreactive cells showed the same frequencies in light and dark islets with developmental stages except exocrine which increased with developmental stages.  相似文献   

17.
18.
Summary Araldite sections of formalin-fixed pancreas from chicks at hatching were treated by an indirect immuno-enzyme technique to reveal cells containing APP, somatostatin, glucagon and insulin.APP cells were found scattered in the exocrine parenchyma. A few were associated with insulin-containing B islets and occasional cells occurred in and around glucagon-containing A islets. Somatostatin-immunoreactive cells were distributed peripherally in A and B islets and were dispersed in the exocrine tissue. APP cells were roughly as numerous in the exocrine parenchyma as somatostatin-immunoreactive cells.Since certain published observations point to the possible occurrence of APP and somatostatin in the same cells, consecutive sections were stained for these hormones. In no case did the two peptides occur in the same cell. Sections subjected to double-staining confirmed this result. Therefore it is likely that the described differences between APP and somatostatin-immunoreactive cells are valid.  相似文献   

19.
Araldite sections of formalin-fixed pancreas from chicks at hatching were treated by an indirect immuno-enzyme technique to reveal cells containing APP, somatostatin, glucagon and insulin. APP cells were found scattered in the exocrine parenchyma. A few were associated with insulin-containing B islets and occasional cells occurred in and around glucagon-containing A islets. Somatostatin-immunoreactive cells were distributed peripherally in A and B islets and were dispersed in the exocrine tissue. APP cells were roughly as numerous in the exocrine parenchyma as somatostatin-immunoreactive cells. Since certain published observations point to the possible occurrence of APP and somatostatin in the same cells, consecutive sections were stained for these hormones. In no case did the two peptides occur in the same cell. Sections subjected to double-staining confirmed this result. Therefore it is likely that the described differences between APP and somatostatin-immunoreactive cells are valid.  相似文献   

20.
Summary The development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号