首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterobacter sakazakii is associated with neonatal infections and is occasionally present at low levels (<1 CFU/g) in powdered infant formula milk (IFM). It has been previously reported that some E. sakazakii strains do not grow in standard media for Enterobacteriaceae and coliform bacteria; therefore, a reliable method is needed for recovery of the organism. Three E. sakazakii enrichment broths-Enterobacteriaceae enrichment broth (EE), E. sakazakii selective broth (ESSB), and modified lauryl sulfate broth (mLST)-were compared with a novel broth designed for maximum recovery of E. sakazakii, E. sakazakii enrichment broth (ESE). One hundred seventy-seven strains (100%) grew in ESE, whereas between 2 and 6% of strains did not grow in EE, mLST, or ESSB. E. sakazakii possesses alpha-glucosidase activity, and a number of selective, chromogenic agars for E. sakazakii isolation based on this enzyme have been developed. E. sakazakii isolation agar produced fewer false-positive colonies than did Druggan-Forsythe-Iversen agar. However, the latter supported the growth of more E. sakazakii strains. It was also determined that 2% of E. sakazakii strains did not produce yellow pigmentation on tryptone soya agar at 25 degrees C, a characteristic frequently cited in the identification of E. sakazakii. The recovery of desiccated E. sakazakii (0.2 to 2000 CFU/25 g) from powdered IFM in the presence of a competing flora was determined with various enrichment broths and differential selective media. Current media designed for the isolation and presumptive identification of E. sakazakii do not support the growth of all currently known E. sakazakii phenotypes; therefore, improvements in the proposed methods are desirable.  相似文献   

2.
AIMS: To determine survival and growth characteristics of Enterobacter sakazakii in infant rice cereal as affected by type of liquid used for reconstitution and storage temperature after reconstitution. METHODS AND RESULTS: A commercially manufactured dry infant rice cereal was reconstituted with water, apple juice, milk, or liquid infant formula, inoculated with a 10-strain mixture of E. sakazakii at populations of 0.27, 0.93, and 9.3 CFU ml(-1), and incubated at 4, 12, 21 or 30 degrees C for up to 72 h. Growth did not occur in cereal reconstituted with apple juice, regardless of storage temperature, or in cereal reconstituted with water, milk, or formula and stored at 4 degrees C. The lag time for growth in cereal reconstituted with water, milk, or formula was decreased as the incubation temperature (12, 21 and 30 degrees C) was increased. Upon reaching maximum populations of 7-8 log10 CFU ml(-1), in some instances populations decreased to nondetectable levels during subsequent storage which was concurrent with decreases in pH. CONCLUSIONS: Enterobacter sakazakii initially at very low populations can rapidly grow in infant rice cereal reconstituted with water, milk, or infant formula. SIGNIFICANCE AND IMPACT OF THE STUDY: Reconstituted infant rice cereal can support luxuriant growth of E. sakazakii. Reconstituted cereal that is not immediately consumed should be discarded or stored at a temperature at which E. sakazakii and other food-borne pathogens cannot grow.  相似文献   

3.
Aims:  To determine the survival and growth characteristics of Cronobacter species ( Enterobacter sakazakii ) in infant wheat-based formulas reconstituted with water, milk, grape juice or apple juice during storage.
Methods and Results:  Infant wheat-based formulas were reconstituted with water, ultra high temperature milk, pasteurized grape or apple juices. The reconstituted formulas were inoculated with Cronobacter sakazakii and Cronobacter muytjensii and stored at 4, 25 or 37°C for up to 24 h. At 25 and 37°C, Cronobacter grew more (>5 log10) in formulas reconstituted with water or milk than those prepared with grape or apple juices ( c. 2–3 log10). The organism persisted, but did not grow in any formulas stored at 4°C. Formulas reconstituted with water and milk decreased from pH 6·0 to 4·8–5·0 after 24 h, whereas the pH of the formulas reconstituted with fruit juices remained at their initial pH values, c. pH 4·8–5·0.
Conclusions:  Cronobacter sakazakii and C. muytjensii can grow in reconstituted wheat-based formulas. If not immediately consumed, these formulas should be stored at refrigeration temperatures to reduce the risk of infant infection.
Significance and Impact of the Study:  The results of this study will be of use to regulatory agencies and infant formula producers to recommend storage conditions that reduce the growth of Cronobacter in infant wheat-based formulas.  相似文献   

4.
Enterobacter sakazakii can be present, although in low levels, in dry powdered infant formulae, and it has been linked to cases of meningitis in neonates, especially those born prematurely. In order to prevent illness, product contamination at manufacture and during preparation, as well as growth after reconstitution, must be minimized by appropriate control measures. In this publication, several determinants of the growth of E. sakazakii in reconstituted infant formula are reported. The following key growth parameters were determined: lag time, specific growth rate, and maximum population density. Cells were harvested at different phases of growth and spiked into powdered infant formula. After reconstitution in sterile water, E. sakazakii was able to grow at temperatures between 8 and 47 degrees C. The estimated optimal growth temperature was 39.4 degrees C, whereas the optimal specific growth rate was 2.31 h(-1). The effect of temperature on the specific growth rate was described with two secondary growth models. The resulting minimum and maximum temperatures estimated with the secondary Rosso equation were 3.6 degrees C and 47.6 degrees C, respectively. The estimated lag time varied from 83.3 +/- 18.7 h at 10 degrees C to 1.73 +/- 0.43 h at 37 degrees C and could be described with the hyperbolic model and reciprocal square root relation. Cells harvested at different phases of growth did not exhibit significant differences in either specific growth rate or lag time. Strains did not have different lag times, and lag times were short given that the cells had spent several (3 to 10) days in dry powdered infant formula. The growth rates and lag times at various temperatures obtained in this study may help in calculations of the period for which reconstituted infant formula can be stored at a specific temperature without detrimental impact on health.  相似文献   

5.
Desiccation and heat tolerance of Enterobacter sakazakii   总被引:7,自引:0,他引:7  
AIMS: Enterobacter sakazakii is an opportunistic pathogen which has been isolated at low levels from powdered infant formulas. This study was performed to demonstrate that Ent. sakazakii is not particularly thermotolerant, but can adapt to osmotic and dry stress. METHODS AND RESULTS: We determined the heat, osmotic and dry stress resistance of Ent. sakazakii. The D-value at 58 degrees C ranged from 0.39 to 0.60 min, which is comparable with that of other Enterobacteriaceae, but much lower than reported previously (Nazarowec-White and Farber 1997, Letters in Applied Microbiology 24: 9-13). However, stationary phase Ent. sakazakii cells were found to be more resistant to osmotic and dry stress than Escherichia coli, Salmonella and other strains of Enterobacteriaceae tested. Further analysis indicated that the dry resistance is most likely linked to accumulation of trehalose in the cells. CONCLUSIONS: The high tolerance to desiccation provides a competitive advantage for Ent. sakazakii in dry environments, as found in milk powder factories, and thereby increases the risk of postpasteurization contamination of the finished product. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding of the physiology and survival strategies of Ent. sakazakii is an important step in the efforts to eliminate this bacterium from the critical food production environments.  相似文献   

6.
Enterobacter sakazakii may be related to outbreaks of meningitis, septicemia, and necrotizing enterocolitis, mainly in neonates. To reduce the risk of E. sakazakii in baby foods, thermal characteristics for Korean E. sakazakii isolates were determined at 52, 56, and 60 degrees C in saline solution, rehydrated powdered infant formula, and dried baby food. In saline solution, their D-values were 12-16, 3-5, and 0.9-1 min for each temperature. D-values increased to 16-20, 4-5, and 2-4 min in rehydrated infant formula and 14-17, 5-6, and 2-3 min in dried baby food. The overall calculated z-value was 6-8 for saline, 8-10 for powdered infant formula, and 9-11 for dried baby food. Thermal inactivation of E. sakazakii during rehydration of powdered infant formula was investigated by viable counts. Inactivation of cultured E. sakazakii in infant formula milk did not occur for 20 min at room temperature after rehydration with the water at 50 degrees C and their counts were reduced by about 1-2 log CFU/g at 60 degrees C and 4-6 log CFU/ml with the water at 65 and 70 degrees C. However, the thermostability of adapted E. sakazakii to the powdered infant formula increased more than two times. Considering that the levels of E. sakazakii observed in powdered infant formula have generally been 1 CFU/100 g of dry formula or less, contamination with E. sakazakii can be reduced or eliminated by rehydrating water with at least 10 degrees C higher temperature than the manufacturer-recommended 50 degrees C.  相似文献   

7.
Enterobacter sakazakii has recently been recognized as an often fatal neonatal pathogen that rarely infects adults. Although not much is known about factors involved in its pathogenicity, the organism has been reported to produce enterotoxin. Currently, no information is available in the literature about the production and characterization of the enterotoxin. This report is the first attempt regarding purification and biochemical characterization of the enterotoxin produced from E. sakazakii. The toxin was purified by ammonium sulfate precipitation, followed by DEAE cellulose ion exchange and desalting by Sephadex G-100. The 66 kDa toxin was most active at pH 6 and was stable at 90 degrees C for 30 min. This stability combined with the potent activity of the toxin (LD50 = 56 pg) emphasizes the potential risk to neonates fed infant milk formula contaminated with E. sakazakii. Further detailed molecular biological studies on the toxin are warranted in view of its stability and activity.  相似文献   

8.
Saccharomyces cerevisiae strain 2-39/10A is able to ferment alcohol at 42 degrees C. The ability of various yeast strains, including 2-39/10A, to grow at high temperatures was compared. The strain 2-39/10A was able to grow at 42 degrees C and the high temperature growth was found to be governed by more than one gene. The yeast strains that can grow at 42 degrees C were bred by crossing the haploid strains, which are inherently unable to grow at high temperatures.  相似文献   

9.
A study was done to determine the performance of differential, selective media for supporting resuscitation and colony development by stressed cells of Enterobacter sakazakii. Cells of four strains of E. sakazakii isolated from powdered infant formula were exposed to five stress conditions: heat (55 degrees C for 5 min), freezing (-20 degrees C for 24 h, thawed, frozen again at -20 degrees C for 2 h, thawed), acidic pH (3.54), alkaline pH (11.25), and desiccation in powdered infant formula (water activity, 0.25; 21 degrees C for 31 days). Control and stressed cells were spiral plated on tryptic soy agar supplemented with 0.1% pyruvate (TSAP, a nonselective control medium); Leuschner, Baird, Donald, and Cox (LBDC) agar (a differential, nonselective medium); Oh and Kang agar (OK); fecal coliform agar (FCA); Druggan-Forsythe-Iversen (DFI) medium; violet red bile glucose (VRBG) agar; and Enterobacteriaceae enrichment (EE) agar. With the exception of desiccation-stressed cells, suspensions of stressed cells were also plated on these media and on R&F Enterobacter sakazakii chromogenic plating (RF) medium using the ecometric technique. The order of performance of media for recovering control and heat-, freeze-, acid-, and alkaline-stressed cells by spiral plating was TSAP > LBDC > FCA > OK, VRBG > DFI > EE; the general order for recovering desiccated cells was TSAP, LBDC, FCA, OK > DFI, VRBG, EE. Using the ecometric technique, the general order of growth indices of stressed cells was TSAP, LBDC > FCA > RF, VRBG, OK > DFI, EE. The results indicate that differential, selective media vary greatly in their abilities to support resuscitation and colony formation by stressed cells of E. sakazakii. The orders of performance of media for recovering stressed cells were similar using spiral plating and ecometric techniques, but results from spiral plating should be considered more conclusive.  相似文献   

10.
阪崎肠杆菌显色培养基的应用研究   总被引:1,自引:0,他引:1  
阪崎肠杆菌(Enterobacter sakazakii)是新近引起广泛关注的一种危险的条件致病菌, 主要存在于婴幼儿奶粉、婴幼儿补充食品中。由于目前日常使用的传统检验方法存在检测周期长等方面的不足之处, 本实验室研究设计出一种新的显色培养基(HKMCES), 通过与OXOID公司的同类产品(OXCES)比较, 分别应用于质控菌株、污染样品和实际样品的测试, 对这2种显色培养基的灵敏度、特异性、检测效果以及前增菌方法进行了初步评价。结果表明, 合适的增菌方法更有利于样品中阪崎肠杆菌的检出, 本实验室研制的显色培养基和OXOID公司的显色培养基均具有较好的选择性和特异性, 检测效果相当。这种新的显色培养基能使检测周期缩短, 具有较好的应用价值。  相似文献   

11.
AIMS: The present study was conducted to screen for psychrophilic micro-organisms that are able to hydrolyse lactose at low temperature, and to examine the cold-active beta-galactosidase produced by the isolated psychrophilic micro-organisms. METHODS AND RESULTS: Psychrophilic bacteria, which grow on lactose as a sole carbon source, were isolated from soil from Hokkaido, Japan. The phenotype and sequence of 16S rDNA of the isolated strains indicated a taxonomic affiliation to Arthrobacter psychrolactophilus. The isolated A. psychrolactophilus strains were able to grow on lactose at below 5 degrees C, and showed cold-active beta-galactosidase activity, which was highly specific at even 0 degrees C. CONCLUSIONS: Facts in this study may indicate the possibility that the isolated strains produce novel beta-galactosidases that are able to hydrolyse lactose at low temperature, although some strains have isozymes. SIGNIFICANCE AND IMPACT OF THE STUDY: It may be possible that the cold active beta-galactosidases from the isolated strains can be applied to the food industry, e.g. processing of milk and whey below 5 degrees C.  相似文献   

12.
Enterobacter sakazakii is an opportunistic pathogen and an occasional contaminant in powdered infant formula. Interaction between specific probiotics and E. sakazakii may reduce the risk of infection. The aim of this study was to characterize in vitro the ability of probiotics (alone and in combinations) to inhibit, compete with and displace the adhesion of E. sakazakii to immobilized human mucus and to assess their capacity to aggregate with pathogen. Specific probiotic strains have proved to aggregate E. sakazakii cells and, through competitive exclusion, inhibition and displacement of the adhered pathogen, were able to inhibit E. sakazakii action on intestinal mucus. The ability to inhibit and to displace adhered pathogen depended on both the probiotic and the pathogen, suggesting that several complementary mechanisms are involved in the processes. We suggest that the selection of specific probiotic strains and their combinations may be a useful means of counteracting E. sakazakii contamination in infant formula and thus to reduce the risk of emerging infection. This approach may also allow the development of new probiotic combinations to counteract the risks associated with other pathogens by improving the intestinal barrier against pathogens.  相似文献   

13.
Aim:  To evaluate the effect of starvation, heat, cold, acid, alkaline, chlorine and ethanol stresses on the resistance of Enterobacter sakazakii in powdered infant milk formula (PIMF) towards gamma radiation.
Methods and Results:  Stressed cells of E. sakazakii ATCC 51329 and four other food isolate strains were mixed individually with PIMF, kept overnight at room temperature, and then exposed to gamma radiation up to 7·5 kGy. The D 10-values were determined using linear regression and for the stressed E. sakazakii strains these values ranged from 0·82 to 1·95 kGy.
Conclusions:  Environmental stresses did not significantly change the sensitivity of most E. sakazakii strains to ionizing radiation.
Significance and Impact of the Study:  Data obtained established that most forms of environmental stress are unlikely to significantly enhance the resistance of E. sakazakii strains to lethal, low dose irradiation treatment.  相似文献   

14.
AIMS: To evaluate some physiological characteristics of the Enterobacteriaceae isolated from Pecorino cheese. METHODS AND RESULTS: The production of organic acids, secondary volatile compounds, biogenic amines (BA) and the lipolytic and proteolytic activities of Citrobacter braakii, Enterobacter sakazakii, Escherichia coli, Kluyvera spp., Salmonella enterica ssp. arizonae and Serratia odorifera strains were determined in skim milk after 48 h of fermentation at 30 degrees C. The proteolytic activity observed only in Ser. odorifera and Kluyvera spp. was confirmed by the peptide profiles of the pH 4.6-insoluble fraction using RP-HPLC; however, the lipase activity was evidenced in all the isolates of E. coli, Kluyvera spp. and Salm. enterica ssp. arizonae. During fermentation, all the strains utilized citric acid and produced significant quantities of putrescine followed by histamine, spermine and spermidine as well as acetic and lactic acid. Moreover, the major volatile compounds produced were ethanol, 2,3-butanedione, 3-hydroxy-2-butanone, 2-heptanone and acetone. CONCLUSIONS: The Enterobacteriaceae of dairy origin possess many metabolic activities that could affect the sensory quality of the cheese in which they grow during ripening. SIGNIFICANCE AND IMPACT OF THE STUDY: The important physiological characteristics possessed by Enterobacteriaceae confirm the complexity of the microbiota of Pecorino Abruzzese cheese, which influences the typical sensory properties of this product.  相似文献   

15.
A commercial chromogenic agar medium (DFI) was supplemented with glucose (mDFI) to enhance the specificity of Enterobacter sakazakii (E. sakazakii) detection. Escherichia vulneris (E. vulneris), a putative false-positive strain on the DFI medium, produces alpha-glucosidase. The enzyme alpha- glucosidase hydrolyzes a substrate, 5-bromo-4-chloro-3- indolyl-alpha,D-glucopyranoside (XalphaGlc), producing green colonies. E. sakazakii strains produced green colonies on both DFI and mDFI agar, whereas E. vulneris produced green colonies on DFI agar but small white colonies on mDFI agar. E. sakazakii and E. vulneris were also readily differentiated by colony color when the mixed culture of the two strains was plated on mDFI agar and incubated for 24 h at 37 degrees C. The results indicate that the selectivity of the commercial chromogenic agar medium could be improved by a simple supplementation with glucose.  相似文献   

16.
Nonproteolytic strains of Clostridium botulinum will grow at refrigeration temperatures and thus pose a potential hazard in minimally processed foods. Spores of types B, E, and F strains were used to inoculate an anaerobic meat medium. The effects of various combinations of pH, NaCl concentration, addition of lysozyme, heat treatment (85 to 95 degrees C), and incubation temperature (5 to 16 degrees C) on time until growth were determined. No growth occurred after spores were heated at 95 degrees C, but lysozyme improved recovery from spores heated at 85 and 90 degrees C.  相似文献   

17.
Thermotolerance, the ability of cells and organisms to withstand severe elevated temperatures after brief exposure to mild elevated temperatures, has been studied in numerous laboratories. Survival thermotolerance is defined as the increase in cell or organism survival at severe elevated temperatures after a pretreatment at mild elevated temperatures. This study examines splicing thermotolerance in Drosophila melanogaster, the ability to splice pre-mRNAs made at the severe temperature (38 degrees C) after a brief pretreatment at a milder temperature (35 degrees C). It is probably one of a number of mechanisms by which cells adapt to heat shock. These experiments demonstrate that pre-mRNAs synthesized at the severe temperatures in splicing thermotolerant cells, although protected in splicing-competent complexes, are not actually processed to mature mRNAs until the cells are returned to their normal temperature. We have also studied the kinetics of acquisition and loss of splicing thermotolerance. As little as 10 min of pretreatment at 35 degrees C was sufficient to provide full splicing thermotolerance to a 30-min severe heat shock of 38 degrees C. Pretreatments of less than 10 min provide partial splicing thermotolerance for a 30-min severe heat shock. Full splicing thermotolerance activity begins to decay about 4 h after the cessation of the 35 degrees C incubation and is completely lost by 8 h after the pretreatment. The kinetics experiments of pre-mRNAs synthesized during the 38 degrees C treatment in splicing thermotolerant cells indicate that one or more splicing thermotolerance factors are synthesized during the 35 degrees C pretreatment which interact with pre-mRNA-containing complexes to keep them in a splicing-competent state. These kinetic experiments also indicate that in cells which are partially splicing thermotolerant, the pre-mRNAs synthesized early during the 38 degrees C incubation are protected, whereas those synthesized late are not. In the absence of splicing thermotolerant factors, the pre-mRNA-containing complexes leave the normal splicing pathway and are allowed to exit to the cytoplasm.  相似文献   

18.
AIMS: The aim of this study was to determine the role of curli in attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel. METHODS AND RESULTS: Three curli-deficient strains (43895-, 43894- and E0018-) and three curli over-producing strains (43895+, 43894+ and E0018+) of E. coli O157:H7 were studied. Stainless steel coupons (SSC) were immersed in cell suspensions of each strain for 24 h at 4 degrees C. The number of cells attached to SSC was determined. To determine the ability of attached cells to form biofilm, SSC were immersed in 10% of tryptic soya broth up to 6 days at 22 degrees C. Curli-deficient and curli-producing strains did not differ in their ability to attach to SSC, but only curli-producing strains formed biofilms. CONCLUSIONS: Curli production by E. coli O157:H7 does not affect attachment of cells on stainless steel but curli-producing strains are better able to form biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: Curli production by E. coli O157:H7 enhances its ability to form biofilm on stainless steel, thereby potentially resulting in increased difficulty in removing or killing cells by routine cleaning and sanitizing procedures used in food-processing plants.  相似文献   

19.
A note on Aeromonas spp. from chickens as possible food-borne pathogens   总被引:1,自引:0,他引:1  
The possible role of Aeromonas spp. as potential food-borne psychrotrophic pathogens was investigated by examining organisms isolated from processed raw chicken for their biochemical characteristics, ability to produce exotoxins and to grow at chill temperatures. These strains, in particular A. sobria, with identical characteristics to human diarrhoea-associated aeromonads were readily found. Chicken, and human and environmental (water) strains characterized in a previous study, were investigated for their ability to grow at refrigeration temperatures (5 +/- 2 degrees C) and, for selected strains, the theoretical minimum temperature for growth (Tmin) was determined from the growth pattern in a temperature gradient incubator. All enterotoxigenic chicken strains tested were typical mesophiles, with an optimal growth temperature of approximately 37 degrees C and Tmin values approximately 4.5 degrees C. They were rapidly outgrown by a psychrotrophic Pseudomonas sp. typical of spoilage biota found on food. Enterotoxin was not produced below 15 degrees C by any of the toxigenic food strains tested. The Aeromonas strains isolated from chickens in this study seem unlikely therefore to be a significant health risk, provided the chickens are properly stored and cooked. This would appear to be substantiated by the lack of reports of food-associated outbreaks of illness from these sources.  相似文献   

20.
Aspergillus fumigatus grows optimally from 37 to 42 degrees C but can grow at temperatures up to 55 degrees C. To study the genetic basis of thermotolerance and its role in virulence of A. fumigatus, temperature sensitive mutants were isolated. One of the mutants that grew at 42 degrees C but not at 48 degrees C was complemented and the gene, THTA, was identified. Deletion of THTA showed the same temperature sensitivity as the original mutant. THTA encodes a putative protein of 141 kDa with unknown function and the HA-tagged ThtAp accumulated to similar levels in cultures grown at either 37 or 48 degrees C. Southern blot analysis and database searches revealed the presence of THTA-related sequences in several other ascomycetous fungi. No difference in virulence was observed between the deltathtA and wild-type strains. Thus, THTA is essential for growth of A. fumigatus at high temperatures but does not contribute to the pathogenicity of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号