首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of cellulase by Trichoderma reesei from dairy manure   总被引:6,自引:0,他引:6  
Cellulase production by the fungi Trichoderma reesei was studied using dairy manure as a substrate. Data showed that T. reesei RUT-C30 had higher cellulase production than T. reesei QM 9414 and that a homogenized manure, treated by a blender to reduce fiber size, led to higher cellulase production. The cellulase production was further optimized by growing T. reesei RUT-C30 on homogenized manure. The effects of manure concentration, pH, and temperature on cellulase production were investigated with optimal parameter values determined to be 10 g/l manure (dry basis), 25.5 degrees C, and pH 5.7, respectively. Elimination of CaCl2, MgSO4, nitrogen sources (NH4+ and urea) and trace elements (Fe2+, Zn2+, Co2+ and Mn2+) from the original salt solution had no negative influence on the cellulase production, while phosphate elimination did reduce cellulase production. Based on above results, the final medium composition was simplified with manure additives being KH2PO4, tween-80 and CoCl2 only. Using this medium composition and a reaction time of 6-8 days, a maximum cellulase production activity of 1.74 IU/ml of filter paper activity, 12.22 IU/ml of CMCase activity, and 0.0978 IU/ml of beta-glucosidase was obtained. This filter paper activity is the highest ever reported in cellulase production from agricultural wastes.  相似文献   

2.
The production of cellulases in batch culture was studied using a mutant strain of Trichoderma reesei C-5 growing on lactose. Growth kinetic parameters on 2% lactose were studied and the comparative results for growth and enzyme productivities at two different lactose levels are discussed. The cellulase synthesis rate depended on the lactose concentration in the medium. Although growth was favoured at a higher lactose level, the volumetric enzyme productivity did not increase in proportion and the specific enzyme productivity decreased to a certain extent, indicating that partial catabolic inhibition at higher lactose concentrations may be possible. However, it was noted that the mutant strain was highly depressed and capable of synthesising active cellulases on lactose.  相似文献   

3.
4.
Inactivation of the cellulase of Trichoderma reesei (EC 3.2.1.4) by shear, is of sufficient magnitude to merit consideration in the design of equipment for the enzymatic hydrolysis of cellulose. The inac inactivation constant, kd, is a function of the flow rate of the enzyme solution through a fine capillary tube. kd increased slowly at low shear stress, and much more rapidly when the shear stress was greater than 15 dynes cm?2.  相似文献   

5.
Two components of the cellulase complex (E.C. 3.2.1.4) of the fungus Trichoderma reesei were localized at the ultrastructural level. Immunocytochemistry and enzyme cytochemistry demonstrated that cellobiohydrolase and beta-1,4 glucanase were localized within cisternae of endoplasmic reticulum and within membrane complexes of cellulose-grown hyphae. Both enzymes were also present in the culture medium. Glucose-grown control hyphae lacked enzyme-specific staining, and no enzyme activity was detected in the growth medium.  相似文献   

6.
In the present study, the optimum conditions for the production of xylanase by immobilized spores of Trichoderma reesei SAF3 in calcium alginate beads were determined. The operational stability of the beads during xylanase production under semi-continuous fermentation was also studied. The influence of alginate concentration (1, 2, 3, and 4%) and initial cell loading (100, 200, 300, 400, and 500 beads per flask) on xylanase production was considered. The production of xylanase was found to increase significantly with increasing concentration of alginate and reached a maximum yield of 3.12 ± 0.18 U ml−1 at 2% (w/v). The immobilized cells produced xylanase consistently up to 10 cycles and reached a maximum level at the forth cycle (3.36 ± 0.2 U ml−1).  相似文献   

7.
Aerobic cells of Trichoderma reesei have been immobilized by the radiation polymerization technique using fibrous substances and hydroxyethyl methacrylate. The enzyme [cellulase, 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] productivity and growth of the cells in the immobilized growing cells have been studied. The enzyme (filter paper) activity in the immobilized cells was comparable to that of the intact cells, showing that the cells immobilized with fibrous materials grow and become adhered to the surface of the fibrils. The filter paper activity of the immobilized cells was affected mainly by monomer concentration and the content of the fibrous materials, as well as the irradiation dose. It was demonstrated that in repeated batch culture of the immobilized cells the filter paper activity gave a constant value, and leakage of the cells was not observed.  相似文献   

8.
通过(NH4)2SO4分级沉淀、HiPrep 26/10 Desalting凝胶色谱脱盐、Source 15 Q阴离子交换色谱技术,里氏木霉(Rut C-30)纤维素酶主要组分得以初步分开,再经过Source 15 S阳离子交换色谱、HiPrep Sephacryl S-100 HR凝胶过滤色谱、Superdex 75 PrepGrade凝胶过滤色谱进一步分离纯化,得到2个纯化的内切葡聚糖酶组分EGⅡ、EGⅠ和一个外切葡聚糖酶组分CBHⅠ;经过SDS-PAGE电泳鉴定为电泳纯,测得相对分子质量分别为5.22×104,5.62×104和6.90×104。EGⅡ的最适反应pH是5.6,最适反应温度为65℃;EGⅠ的最适反应pH是4.4,最适反应温度为55℃;以羧甲基纤维素(CMC)为底物时,EGⅠ、EGⅡ的米氏常数(Km)分别为2.20 mg/mL、3.38 mg/mL。CBHⅠ的最适反应pH是5.8,最适反应温度为60℃,以对硝基苯基-β-D-纤维二糖苷(PNPC)为底物时,米氏常数(Km)为0.12 mg/mL。  相似文献   

9.
以里氏木霉及米根霉单菌固态发酵为对象,考察不同混合发酵形式对里氏木霉与米根霉混合固态发酵产纤维素酶的影响。结果表明:同时接种里氏木霉与米根霉,试验考察的两菌种接种量比1∶1(以孢子个数计)及5∶1条件下,两菌未产生明显协同产酶作用。米根霉延时(24 h)接种且菌种量比5∶1以及米根霉延时(48 h)接种且菌种量比1∶1,2种发酵形式产酶情况类似,滤纸酶活(FPA)及羧甲基纤维素酶(CMCase)酶活相对米根霉单菌发酵有所提高,而β-葡萄糖苷酶(β-GA)酶活相对里氏木霉单菌固态发酵结束时分别增加4.66及4.40倍,可以发现两菌产生一定协同作用。在米根霉延时(48 h)接种且菌种量比5∶1的发酵形式下,FPA及CMCase在发酵第7天酶活分别达到44.04 IU/g、627.14 U/g(以1 g干曲计),分别是里氏木霉固态单菌发酵产酶达到稳定期时酶活的1.36和1.63倍,两菌产生了有效的协同作用。  相似文献   

10.
The enzyme cellulase, a multienzyme complex made up of several proteins, catalyzes the conversion of cellulose to glucose in an enzymatic hydrolysis-based biomass-to-ethanol process. Production of cellulase enzyme proteins in large quantities using the fungus Trichoderma reesei requires understanding the dynamics of growth and enzyme production. The method of neural network parameter function modeling, which combines the approximation capabilities of neural networks with fundamental process knowledge, is utilized to develop a mathematical model of this dynamic system. In addition, kinetic models are also developed. Laboratory data from bench-scale fermentations involving growth and protein production by T. reesei on lactose and xylose are used to estimate the parameters in these models. The relative performances of the various models and the results of optimizing these models on two different performance measures are presented. An approximately 33% lower root-mean-squared error (RMSE) in protein predictions and about 40% lower total RMSE is obtained with the neural network-based model as opposed to kinetic models. Using the neural network-based model, the RMSE in predicting optimal conditions for two performance indices, is about 67% and 40% lower, respectively, when compared with the kinetic models. Thus, both model predictions and optimization results from the neural network-based model are found to be closer to the experimental data than the kinetic models developed in this work. It is shown that the neural network parameter function modeling method can be useful as a "macromodeling" technique to rapidly develop dynamic models of a process.  相似文献   

11.
A combination of ionic strength reduction and diafiltration of Trichoderma reesei cellulate complex through a hollow fiber apparatus of 5000 molecular weight (MW) cutoff and subsequent passage of filtrate over a Spherogel-TSK 3000-SW column provided extracts that had the ability to generate microfibrils in filter paper and to disrupt filter paper and corn leaf tissue. Milligram quantities of material obtained from these extracts released small amounts of soluble carbohydrate from filter paper, required ferric iron for increased activity, and contained amino acids. Short fiber formation and disruption of filter paper during interaction with these extracts was enhanced by prior acid treatment and eliminated by prior base treatment. The amount of soluble carbohydrate hydrolyzed in 24 h from filter paper by whole cellulase complex was not changed by first disrupting the substrate with the extracts.  相似文献   

12.
Inhibition of Trichoderma reesei cellulase by sugars and solvents   总被引:2,自引:0,他引:2  
Inhibition of Trichoderma reesei cellulase by sugars (glucose, delta-gluconolactone, and cellobiose) and solvents (ethanol, butanol, and acetone) was studied using cellulose azure. Glucose, cellobiose, ethanol, and butanol were noncompetitive inhibitors, delta-gluconolactone was a mixed inhibitor, and acetone was a noncompetitive activator. Converting cellobiose to glucose reduces the effective inhibitor binding constant by 6 times and converting cellobiose to ethanol reduces it by 16 times.  相似文献   

13.
Trichoderma reesei is an important cellulase producer and its secondary mycelial phase is responsible for cellulase expression and secretion in submerged fermentation. Little is known regarding the effects of fungal morphology on cellulase production by Trichoderma sp. In this study we aimed to extend the understanding of cellulase production by T. reesei, especially correlating cellulase productivity with pellet morphology and with its secretome characteristics. We found that T. reesei was more likely to form pellets in malt extract broth than in potato dextrose broth. CaCO(3) helped in formation of fine pellets in malt extract broth. 10(9) spores/ml resulted in formation of pellets with the size of 0.13 ± 0.047 mm. LC/MS spectrometry analysis indicated that the secretomes from pellet was different from that of mycelial mat under the same fermentation conditions. Optimization tests showed that lactose, xylose and Pluronic F68 are important for efficient production of cellulases with FPU activity in the pellets fermentation. This is the first report on the artificial formation of pellets by Trichoderma sp. as well as correlation between physiological characteristic of the pellets and cellulase production by T. reesei. The findings from this study can be used for improvement of cellulase productivity.  相似文献   

14.
Adsorption of Trichoderma reesei CBHI cellulase on silanized silica   总被引:1,自引:0,他引:1  
Adsorption kinetics and surfactant-mediated elution of Trichoderma reesei CBHI cellulase were recorded in situ, at hydrophobic, silanized silica. Experiments were performed at different solution concentrations, ranging from 0.001 to 0.98 mg/mL. Adsorbed enzyme was partially elutable upon rinsing, with the amount of adsorbed mass remaining being highest at intermediate concentrations. In addition, the resistance to elution with buffer was generally lower at higher concentrations, and the resistance to elution with surfactant was generally lower at intermediate concentrations. These observations are tentatively explained with reference to a mechanism allowing for adsorption of associated monomers of CBHI as well as free monomers.  相似文献   

15.
Protoplasts from Trichoderma reesei were immobilized in alginate and induced to produce cellulase (endoglucanase and β-glucosidase) enzymes. The specific activities of the synthesized enzymes were higher in immobilized protoplasts than in both free and immobilized mycelia. Immobilized protoplasts show an enhanced rate of exocellular β-glucosidase production compared to intact mycelia due to the lack of cell wall. The ratio of the exocellular/intracellular β-glucosidase was 5.9 for immobilized protoplasts and 0.32 for free mycelia.  相似文献   

16.
Summary Evidence is presented which supports the view that two routes exist for the formation of glucose when cellulosic material is saccharified using T. reesei enzyme preparations. The first is via cellobiose and for the second, glucose appears to be formed by a route not involving cellobiose. The second route becomes more apparent when dealing with less crystalline cellulose. This should be considered when constructing strains to produce enzyme preparations for saccharification of less crystalline cellulose.  相似文献   

17.
研究C、N源对里氏木霉(Trichoderma reesei)生产纤维素酶的影响,采用单因素实验方法和中心复合方法对发酵培养基进行优化。单因素实验表明:黄豆饼粉、玉米芯、玉米浆对纤维素酶的影响显著。通过响应面优化,得到最优培养基C、N源的组成:黄豆饼粉32.21 g/L,玉米芯42.29 g/L,玉米浆4.45 g/L。优化条件下,摇瓶发酵7 d的比酶活达到(10.65±0.50)U/mL。  相似文献   

18.
The desorption of Trichoderma reesei cellulase from Avicel by a wide range of desorbents was measured. Emphasis was placed on desorption at alkaline pH. A maximum desorption of 65-68% Avicelase activity was achieved by contact with NaOH, pH 10.0, at 40 degrees C for 5 min in the presence of 0.005% Triton X-100 or Tween 80. The design of a suitable desorption process using these conditions is discussed. Glycerol was also effective as a desorbent either alone or in combination with alkali and detergent. However, relatively high concentrations of glycerol were needed and the maximum desorption achieved, 68%, was not significantly greater than that with only alkali and detergent.  相似文献   

19.
We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed. On cellulose-based medium, on which cellulases are needed for growth, the Deltaace1 strain grew better than the host strain due to the increased cellulase production. On culture media containing sorbitol as the sole carbon source, the growth of the strain with a deletion of the ace1 gene was severely impaired, suggesting that ACEI regulates expression of other genes in addition to cellulase and xylanase genes. A strain with a deletion of the ace1 gene and with a deletion of the ace2 gene coding for the cellulase and xylanase activator ACEII expressed cellulases and xylanases similar to the Deltaace1 strain, indicating that yet another activator regulating cellulase and xylanase promoters was present.  相似文献   

20.
Summary Temperature sensitive mutants of Trichoderma reesei derived from hypersecretory strain RL-P37 were isolated and characterized. Compared to the parent strain, one mutant (LU-ts 1) grew well in the mycelial phase at both permissive (25°C) and non-permissive (37°C) temperatures. However, the secretion of overall protein and active cellulases was significantly reduced in the mutant at the higher temperature. No accumulation of active cellulases or intracellular proteins was observed in the mycelia of LU-ts 1 at 37°C. The inhibitory effects of temperature on cellulase secretion in LU-ts 1 were reversible. Isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses confirmed that the secretion of the major cellulases was greatly reduced in LU-ts 1 at 37°C. Molecular characterization of the various temperature sensitive secretion mutants of T. reesei should help elucidate the crucial aspects of the secretory pathway of this cellulolytic fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号