首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes attending leaf development in the mechanical behavior and elastic moduli of the petioles of Populus tremuloides Michx. were examined in terms of total leaf weight (Wt), lamina and petiole weight (Wl and Wp), petiolar length (L), and lamina surface area (A). A primary concern was the extent to which two elastic moduli (Young's modulus E and the shear modulus G) of petioles changed over time and were correlated with one another. E and G were measured by means of multiple resonance frequency spectra, and together with the dimensions of cross sections through petioles, these two elastic moduli were used to estimate the stiffness of petioles in simple bending and torsion. Petiolar bending was predicted by means of a model incorporating expressions for both the bending stiffness (El) and torsional rigidity (GJ), where I is the second moment of area and J is the torsional constant. The predictions from these models were compared to observed petiolar bendings due to Wl. Additionally, the frequency of the oscillatory motion of leaves (placed in a wind tunnel with a 1 m sec-1 ambient wind speed, directed normal to the blade of the leaf) was determined. Results indicate that L, A, Wl, Wp, and Wt were positively correlated with the age of leaves (crudely estimated as a function of leaf plastochron index, LPI); these morphometric parameters were also correlated with the magnitudes of E and G. Also, G was positively and linearly correlated with E, and was, on the average, an order of magnitude less than E. EI and GJ were positively correlated with LPI. The relationships among E, G, EI, C and Wl, Wp, Wt are discussed in terms of leaf allometries.  相似文献   

2.
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers.  相似文献   

3.
Data are presented on the mechanical consequences of dehydration for the petioles of two monocots and two dicots differing in leaf morphology (pinnate leaves ofChamaedorea erumpens and simple leaves of Spathiphyllum ‘clevelandii‘; pinnate leaves of Acer negundo and simple leaves of A. saccharum). The flexural stiffness EI of petioles decreased over a broad range of tissue water potential (– 10 < ψw <– 50 bars). Within the same range of ψ, the second moment of area I and the elastic modulus E were observed to decrease and increase, respectively. However, the mechanical alterations of Chamaedorea and A. negundo petioles were significantly less than those observed for Spathiphyllum and A. saccharum petioles. The increase in E of Spathiphyllum and A. saccharum petioles attending dehydration was linearly correlated with an increase in the relative volume fraction of tissues with lignified, thick cell walls (“support tissues”). The decrease in I of Spathiphyllum and A. saccharum petioles was linearly correlated with a decrease in the relative volume fraction of tissues with nonlignified, thin cell walls (“ground tissues”). Similar trends were observed for the petioles of C. erumpens and A. negundo but were found not to be statistically significant. Anatomical differences in the relative volume fraction and spatial locations of support tissues in the petioles of these four taxa appear to account for the differences observed in the mechanical consequences of petiole dehydration.  相似文献   

4.
Data are presented for the mechanical responses to dehydrationof petioles from two monocotyledons (Chamaedorea erumpens andSpathiphyllum Clevelandii). These data were used to test thehypothesis that the mechanical properties (elastic modulus Eand flexural stiffness EI) of petioles from C. erumpens arealtered significantly less by dehydration than those of petiolesfrom Spathiphyllum. Dehydration, resulting from either dryingat room temperature or from submergence in various concentrationsof mannitol solutions, produced significant increases in E anddecreases in EI (due to geometric distortions) in both youngand mature Spathiphyllum petioles. Similar trends were observedfor young petioles of C. erumpens, but significantly less sofor mature petioles of this species. Regardless of petiolarage, E increased allometrically as a linear function of tissuedensity, which in turn correlated with the volume fraction oflignified tissues in petioles; however, the proportional increaseof E as a function of tissue density was significantly greaterfor C. erumpens petioles than for Spathiphyllum. Anatomicalanalyses of petiolar transections indicated that Chamaedoreapetioles had larger volume fractions of lignified tissues thanthose of Spathiphyllum and that these tissues were located tomaximize stiffness. These data (and previously reported allometricrelationships between EI and petiolar length) shed light onthe difficulties in evaluating the ‘costs’ of committingtissues to mechanical support. Petioles, biomechanics, leaf anatomy, monocotyledons  相似文献   

5.
Karl J. Niklas 《Oecologia》1992,90(4):518-526
Summary Computer simulations were used to assess the influence of palmate leaf morphology, decussate phyllotaxy, and the elastic moduli of petioles on the capacity of turgid and wilted twigs ofAesculus hippocastanum to intercept direct solar radiation. Leaf size, morphology, orientation, and the Young's and shear moduli (E and G) of petioles were measured and related to leaf position on 8 twigs whose cut ends were placed in water (turgid twigs) and 8 twigs dried for 8 h at room temperature (wilted twigs). Petioles mechanically behaved as elastic cantilevered beams; the loads required to shear petioles at their base from twigs were correlated with the cross-sectional areas of phyllopodia but not with petiole length or tissue volume. Empirically determined morphometric and biomechanical data were used to construct average turgid and wilted twigs. The diurnal capacity to intercept direct sunlight for each was simulated for vertically oriented twigs for 15 h of daylight, 40° N latitude. The daily integrated irradiance (DII) of the wilted twig was roughly 3% less than that of the otherwise comparable twig bearing turgid leaves. Simulations indicated that the orientation of turgid leaves did not maximize DII. More decumbent (wilted) petioles increased DII by as much as 4%. Reduction in the girth, E, or G of petioles, or an increase in petiole length or the surface area of laminae (with attending increase in laminae weight), increased petiolar deflections and DII. Thus, the mechanical design of petioles ofA. hippocastanum was found not to be economical in terms of investing biomass for maximum light interception.  相似文献   

6.
Cyclic electron flow (CEF) plays an important role in photoprotection for angiosperms under environmental stresses. However, ferns are more sensitive to drought and their water transport systems are not as efficient as those of angiosperms, it is unclear whether CEF also contributes to photoprotection in these plants. Using Microsorum punctatum and Paraleptochillus decurrens, we studied the electron fluxes through both photosystem I (PSI) and photosystem II (PSII) under water stress and their leaf anatomies. Our goal was to determine if CEF functions in the photoprotection of these ferns and, if so, whether CEF stimulation is related to leaf anatomy. Compared with P. decurrens, M. punctatum had thicker leaves and cuticles and higher water storage capacity, but lower stomatal density and slower rate of water loss. During induced drought, the decrease in leaf water potential (Ψleaf) was more pronounced in P. decurrens than in M. punctatum. For both species, the decline in Ψleaf was associated with a lower effective PSII quantum yield, photochemical quantum yield of PSI and electron transport rate (ETR), whereas increases were found in the quantum yield of regulated energy dissipation, CEF and CEF/ETR(II) ratio. Values for CEF and the CEF/ETR(II) ratio peaked in M. punctatum at a light intensity of 500–600 µmol m?2 s?1 vs only 150–200 µmol m?2 s?1 in P. decurrens. Therefore, our results indicate that the stimulation of CEF in tropical ferns contributes to their photoprotection under water stress, and is related to their respective drought tolerance and leaf anatomy.  相似文献   

7.
W.L. Butler  M. Kitajima 《BBA》1975,396(1):72-85
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I,kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α andkT(II→I) in the absence (?) and presence (+) of Mg2+:α/?α+= 1.2andk/?T(II→I)k+T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg2+,a+ = 0.27 and the yield of energy transfer,φ+T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg2+? = 0.32 andφT(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I,kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I,kt(II→I). In that caseα/?α+= 1.3,k/?T(II→I)k+T(II→I)= 1.3 andk/?t(II→I)k+(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

8.
Diel variation in specific hydraulic conductivity (ks) was recorded in petioles of two savanna tree species, Schefflera macrocarpa and Caryocar brasiliense, from central Brazil. These two species have compound leaves with long petioles (10–30 cm). In both species, petiole ks decreased sharply with increasing transpiration rates and declining leaf water potentials (ψL) during the morning. Petiole ks increased during the afternoon while the plants were still transpiring and the water in the non‐embolized vessels was still under tension. Dye experiments confirmed that in both species diel variation in ks was associated with embolism formation and repair. When transpiration was prevented in individual leaves, their petiole ks and water potential remained close to their maximum values during the day. When minimum daily ψL on selected branches was experimentally lowered by 0.2–0.6 MPa, the rate of ks recovery during the afternoon was slower in comparison with control branches. Several field manipulations were performed to identify potential mechanisms involved in the refilling of embolized petiole vessels. Removal of the cortex or longitudinal incisions in the cortex prevented afternoon recovery of ks and refilling of embolized vessels. When distilled water was added to petiole surfaces that had been abraded to partially remove the cuticle, ks increased sharply during the morning and early afternoon. Evidence of starch to sugar conversion in the starch sheath cells surrounding the vascular bundles of the petioles was observed during periods of rapid transpiration when the abundance of starch granules in the starch sheath cells surrounding the vascular bundles decreased. Consistent with this, petiole sugar content was highest in the early afternoon. The most parsimonious explanation of the field observations and the experimental results was that an increase in osmotically active solutes in cells outside the vascular bundles at around midday leads to water uptake by these cells. However, the concurrent increase in tissue volume is partially constrained by the cortex, resulting in a transient pressure imbalance that may drive radial water movement in the direction of the embolized vessels, thereby refilling them and restoring water flow. This study thus presents evidence that embolism formation and repair are two distinct phenomena controlled by different variables. The degree of embolism is a function of tension, and the rate of refilling a function of internal pressure imbalances.  相似文献   

9.
Loop-tail (Lp) is a semidominant mutation that affects neurulation in mice. Heterozygous animals are characterized by a looped-tail appearance (pig tail) and wobbly head movements while homozygous embryos exhibit a neural tube closure defect that extends from the caudal midbrain to the tip of the tail. The Lp gene has been finely mapped to the distal part of chromosome 1, and a positional cloning strategy has been initiated to isolate the defective gene. This study represents the characterization of a new Lp allele (Lpm1Jus) induced by N-ethyl-N-nitrosurea mutagenesis. Lpm1Jus/+ mice have a looped-tail appearance, and both Lpm1Jus/Lpm1Jus homozygotes and Lp/Lpm1Jus compound heterozygotes fail to initiate neural tube closure along most of the embryonic axis. These data indicate that the Lpm1Jus allele causes a neural tube defect and overall phenotype similar to that of the original Lp allele. Segregation analysis of 90 (Lpm1Jus/+ × C57BL/6J)F1 × C57BL/6J looped-tail mice with seven markers that define the Lp genetic map (D1Mit455/D1Mit146/D1Mit148/D1Mit270–1 cM–D1Mit113–0.4 cM–Lp–0.2 cM–D1Mit149–0.8 cM–D1Mit115) showed significant linkage between Lpm1Jus and all loci analyzed (P < 0.0001). Eight crossovers were detected with the proximal cluster of D1Mit455, D1Mit146, D1Mit148, and D1Mit270, indicating a recombination rate higher than expected in this region, and a single recombinant was encountered with the distal markers D1Mit149 and D1Mit115. Based on these phenotypic and genetic data, Lpm1Jus is most likely allelic to Lp, thereby representing a valuable additional tool for the positional cloning of the Lp gene and its subsequent molecular characterization.  相似文献   

10.
Complementary techniques of chlorophyll a fluorescence, steady state CO2 exchange, and O2 release during a multiple turnover flash were applied to compare responses to irradiance for leaves of wild type and psbS mutants. The latter included variants in which the psbS gene was deleted (npq4-1) or possessed a single point mutation (npq4-9). Nonphotochemical quenching (NPQ) was reduced by up to 80 and 50%, respectively, in these lines at high irradiance. Analysis of changes in steady-state fluorescence yields and quantum yield of linear electron transport in the context of the reversible radical pair model of Photosystem II (PS II) indicated that NPQ occurs by nonradiative deactivation of chlorophyll singlet states in normal leaves. In contrast, application of the same criteria together with the observed irreversibility of NPQ and decline in density of functional PS II reaction centers following excessive illumination indicated a change in reaction center properties for the psbS deletion phenotype (Npq4-1). Specifically, PS II reaction centers in Npq4-1 convert to a photochemically inactive, yet strongly quenching, form in intense light. The possibility of formation of a carotenoid or chlorophyll cation quencher in the reaction center is discussed. Results for the point mutant phenotype (Npq4-9) were intermediate to those of wild-type and Npq4-1. Furthermore, wild-type leaves exhibited a significant reversible increase in the PS II in vivo rate constant for photochemistry (kP0) in saturating compared to limiting light. Changes in kP0 could not be accounted for in terms of a classic phosphorylation-dependent (state transition) mechanism. Changes in kP0 may arise from alternate pigment—protein conformations that alter the way excitons equilibrate among PS II chromophores. The lack of similar irradiance-dependent changes in kP0 for the psbS mutants suggests a role for the PS II-S protein in the regulation of exciton distribution.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
Pruned source-sink transport systems from predarkened plants of Amaranthus caudatus L. and Gomphrena globosa L. were used to study the localization of 14C-labeled photosynthate imported into experimentally induced sink leaves by microautoradiography. During a 6-h (Amaranthus) or a 4-h (Gomphrena) transport period, 14C-assimilates were translocated acropetally from a mature source leaf provided with 14CO2, into a younger induced sink leaf (dark/-CO2). In addition, a young still-expanding source leaf exposed to 14CO2 exported 14C-assimilates basipetally into a mature induced sink leaf (dark/-CO2). Microautoradiographs showed that imported 14C-photosynthate was strongly accumulated in the sieve element/companion cell complexes of midveins, secondary veins, and minor veins of both the mature and the expanding sink leaf. Some label was also present in the vascular parenchyma and bundlesheath cells. In petioles, 14C-label was concentrated in the sieve element/companion cell complexes of all bundles indicating that assimilates were imported and distributed via the phloem. Moreover, a considerable amount of radioactivity unloaded from the sieve element/companion cell complexes of petiolar bundles, was densely located at sites of secondary wall thickenings of differen-tiating metaxylem vessels, and at sites of chloroplasts of the vascular parenchyma and bundle-sheath cells. These observations were more striking in petioles of Gomphrena than Amaranthus.Abbreviation se/cc sieve element/companion cell  相似文献   

12.
Two extracellular tannin acyl hydrolases (TAH I and TAH II) produced by an Antarctic filamentous fungus Verticillium sp. P9 were purified to homogeneity (7.9- and 10.5-fold with a yield of 1.6 and 0.9%, respectively) and characterized. TAH I and TAH II are multimeric (each consisting of approximately 40 and 46 kDa sub-units) glycoproteins containing 11 and 26% carbohydrates, respectively, and their molecular mass is approximately 155 kDa. TAH I and TAH II are optimally active at pH of 5.5 and 25 and 20°C, respectively. Both the enzymes were activated by Mg2+and Br ions and 0.5–2.0 M urea and inhibited by other metal ions (Zn2+, Cu2+, K+, Cd2+, Ag+, Fe3+, Mn2+, Co2+, Hg2+, Pb2+ and Sn2+), anions, Tween 20, Tween 60, Tween 80, Triton X-100, sodium dodecyl sulphate, β-mercaptoethanol, α-glutathione and 4-chloromercuribenzoate. Both tannases more efficiently hydrolyzed tannic acid than methyl gallate. E a of these reactions and temperature dependence (at 0–30°C) of k cat, k cat/K m, ΔG*, ΔH* and ΔS* for both the enzymes and substrates were determined. The k cat and k cat/K m values (for both the substrates) were considerably higher for the combined preparation of TAH I and TAH II.  相似文献   

13.
Regulation of electron transport rate through Photosystem I (PS I) was investigated in intact sunflower leaves. The rate constant of electron donation via the cytochrome b 6 f complex (kq, s–1) was obtained from the postillumination P700+ reduction rate, measured as the exponential decay of the light-dark difference (D830) of the 830 nm transmission signal. D830 corresponding to maximum oxidisable P700 (D830m) was obtained by applying white light flashes of different intensity and extrapolating the plot of the quantum yield Y vs. D830 to the axis of abscissae (Y->0). Maximum quantum yield of PS I at completely reduced P700 (Ym) was obtained by extrapolating the same plot to the axis of ordinates (D830->0). Regulation of kq, D830m and Ym under rate-limiting CO2 and O2 concentrations applied after air (21% O2, 310 ppm CO2) was investigated. The amplitude of the downregulation of kq (photosynthetic control) was maximal when electron transport rate (ETR) was limited to about 3 nmol cm–2 s–1 and decreased when ETR was higher or lower. Downregulation did not occur in the absence of CO2 and O2. These gases acted only as substrates of ribulosebisphosphate carboxylase-oxygenase, no high-affinity reaction of O2 leading to enhanced photosynthetic control (e.g. Mehler reaction) was detected. After the transition, D830m at first decreased and then increased again, showing that the reduction of the PS I acceptor side disappeared as a result of the downregulation of kq. The variation of Ym had two reasons, PS I acceptor side reduction and variable excitation capture efficiency by P700. It is concluded that electron transport through PS I is coregulated by the rate of plastoquinol oxidation at Cyt b 6 f, excitation capture efficiency by P700, and by acceptor side reduction.Abbreviations Cyt b 6 f cytochrome b 6 f complex - D830 difference of the 830 nm signal from the dark level - ETR electron transport rate - PAD photon absorption density nmol cm–2 s–1 - PFD incident photon flux density, nmol cm–2 s–1 - PS I Photosystem I - PS II Photosystem II - PQH2 plastoquinol - P700 Photosystem I donor pigment - Y quantum yield of PS I electron transport, rel. un.  相似文献   

14.
Water and solute relations of young roots of Phaseolus coccineus have been measured using the root pressure probe. Biphasic root pressure relaxations were obtained when roots were treated with solutions containing different osmotic test solutes. From the relaxations, the hydraulic conductivity (Lpr), the permeability coefficient (Psr), and the reflection coefficient (σsr) of the roots could be evaluated. Lpr was 1.8 to 8.4 . 10?8 m . s?1 . MPa?1 and Psr (in 10?10 m . s?1): methanol, 27–62; ethanol, 44–73; urea, 5–11; mannitol, 1.5; KCl, 7.1–9.2; NaCl, 2.1; NaNO3, 3.7. The hydraulic conductivity was similar when using osmotic and hydrostatic pressure gradients as driving forces. The hydraulic conductivity of individual root cortex cells (Lp) was by two orders of magnitude larger than Lpr (Lp = 0.3 to 4.7 . 10?6 m . s?1 . MPa?1) which indicated a predominant cell-to-cell rather than an apoplasmic transport of water in the Phaseolus root. Except for distances shorter than 20 mm from the root apex, the hydraulic resistance of the roots was limited by the radial movement of water across the root cylinder and not by the hydraulic resistance within the xylem. Reflection coefficients were low: methanol: 0.16–0.34; ethanol: 0.15–0.47; urea: 0.41–0.51; mannitol: 0.68; KCl: 0.43–0.54; NaCl: 0.59; NaNO3: 0.54. The transport coefficients (Lpr, Psr, σsr) have been critically examined for influences of unstirred layers and active transport. The low σsr suggests that the common treatment of the root as a rather perfect osmometer (σsr = 1) analogous to plant cells should be treated cautiously. The reasons for the low σsr and the possible implications of the absolute values of the transport parameters for the absorption of water and nutrients are discussed.  相似文献   

15.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

16.
The movement and polarity of zeatin, a highly active, endogenous cytokinin, through petioles and roots were tested in the classical experimental arrangement using excised 5-mm sections. Zeatin in the receiver cylinders of agar was measured by soybean callus bioassay and by liquid scintillation counting of 14C that had been added in the donor cylinders as [8-14C] zeatin. Both methods agreed in showing movement, but there was no polarity in Coleus #5 petioles. The amounts moved were about one-tenth of the GA-3 movement through petioles of the third pair of leaves of the same clone. Movement of 14C-zeatin through Pisum roots was similarly statistically significant but non-polar; the amounts moved were similar to those previously observed for polar GA-3 movement through Zea roots.  相似文献   

17.
Type II methanotrophs produce polyhydroxybutyrate (PHB), while Type I methanotrophs do not. A laboratory-scale fluidized bed reactor was initially inoculated with a Type II Methylocystis-like dominated culture. At elevated levels of dissolved oxygen (DO, 9 mg/L), pH of 6.2–6.5 with nitrate as the N-source, a Methylobacter-like Type I methanotroph became dominant within the biofilms which did not produce PHB. A shift to biofilms capable of PHB production was achieved by re-inoculating with Type II Methylosinus culture, providing dissolved N2 as the N-source, and maintaining a low influent DO (2.0 mg/L). The resulting biofilms contained both Types I and II methanotrophs. Batch tests indicated that biofilm samples grown with N2 became dominated by Type II methanotrophs and produced PHB. Enrichments with nitrate or ammonium were dominated by Type I methanotrophs without PHB production capability. The key selection factors favoring Type II were N2 as N-source and low DO.  相似文献   

18.
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m2 s1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection.  相似文献   

19.
Several reproductive triats in plants were studied in more than 200 populations of 61 wild species from diverse ecological conditions. As a result, it was found that there occur three distinct types of plants in the energy allocation patterns to reproductive structures (RA) and the propagule output per plant (PN), i.e. (1) the number of propagules per plant increases in response to the increase in RA (Type I), (2) the number of propagules decreases in response to the increase in RA (Type II), and (3) the RA remains constant despite the great differences in the propagule number per plant. A conspicuous trade-off relationship was also discovered to occur between the RA to a single propagule (RA) and the propagule output per plant (PN), such that log RA=logC−blot PN, or RA=C/PN b =CPN b , where C is a constant. The three different ranges ofb-values were recognized, i.e.b<1.0,b>1.0, andb=1.0, which correspond to Type I, Type II, and Type III, respectively. Related problems to the concept ofr- andK-strategy are also discussed.  相似文献   

20.
Earlier studies have shown that the retarding effect of low petiolar temperatures on sucrose transport through sugar beet (Beta vulgaris L.) petioles is markedly time-dependent. Although the initial effect of chilling the petiole to near 0 C is severely inhibitory, translocation rates soon recover (usually within about 2 hours) to values at or near the control rate. In the present studies, selected metabolic parameters were measured simultaneously with translocation. No stoichiometric relationships among petiolar sucrose transport, petiolar respiration (CO2 production), and calculated petiolar ATP turnover rates were evident. It appears that the major sources of energy input energizing carbohydrate transport in sieve tubes function mainly at either loading or unloading sites and not at the level of individual sieve-tube elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号