首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Selective logging is one of the most common forms of forest use in the tropics. Although the effects of selective logging on biodiversity have been widely studied, there is little agreement on the relationship between life-history traits and tolerance to logging. In this study, we assessed how species traits and logging practices combine to determine species responses to selective logging, based on over 4000 observations of the responses of nearly 1000 bird species to selective logging across the tropics. Our analysis shows that species traits, such as feeding group and body mass, and logging practices, such as time since logging and logging intensity, interact to influence a species'' response to logging. Frugivores and insectivores were most adversely affected by logging and declined further with increasing logging intensity. Nectarivores and granivores responded positively to selective logging for the first two decades, after which their abundances decrease below pre-logging levels. Larger species of omnivores and granivores responded more positively to selective logging than smaller species from either feeding group, whereas this effect of body size was reversed for carnivores, herbivores, frugivores and insectivores. Most importantly, species most negatively impacted by selective logging had not recovered approximately 40 years after logging cessation. We conclude that selective timber harvest has the potential to cause large and long-lasting changes in avian biodiversity. However, our results suggest that the impacts can be mitigated to a certain extent through specific forest management strategies such as lengthening the rotation cycle and implementing reduced impact logging.  相似文献   

3.
The inclusion of carbon stock enhancements under the REDD+ framework is likely to drive a rapid increase in biosequestration projects that seek to remove carbon from the atmosphere through rehabilitation of degraded rainforests. Concern has recently been expressed, however, that management interventions to increase carbon stocks may conflict with biodiversity conservation. Focusing on a large-scale rainforest rehabilitation project in northern Borneo, we examine the broad impacts of selective logging and subsequent carbon enhancement across a wide range of invertebrate fauna by comparing the abundance of 28 higher-level taxa within two separate rainforest strata (leaf-litter and understorey) across unlogged, naturally-regenerating and rehabilitated forest. We additionally assess changes in functional composition by examining responses of different feeding guilds. Responses of individual taxa to forest management were idiosyncratic but logging resulted in more than a 20% increase in total invertebrate abundance, with fewer than 20% of taxa in either stratum having significantly lower abundance in logged forest. Rehabilitation resulted in a marked reduction in abundance, particularly among leaf-litter detritivores, but overall, there were much smaller differences between unlogged and rehabilitated forest than between unlogged and naturally regenerating forest in both total invertebrate abundance and the abundances of different feeding guilds. This applied to both strata with the exception of understorey herbivores, which were more abundant in rehabilitated forest than elsewhere. These results support previous data for birds suggesting that carbon stock enhancement in these forests has only limited adverse effects on biodiversity, but with some impacts on abundance within particular guilds.  相似文献   

4.
It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2 degrees C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change.  相似文献   

5.
6.
Abstract Using a randomized experimental design, plots of a savanna grassland were subjected to two levels of grass tuft removal (50% and 90%) in two ways; non-selective (all species removed in proportion to abundance) and selective (tufts of the most palatable species removed first, then the next most palatable, etc.). The plots were maintained in their cleared states for three years, then monitored for the next five. In general, the sward was resilient to the disturbance except for the 90% selectively cleared treatment, in which a dominant, palatable species (Themeda triandra) failed to recover (though die most palatable species, Sorghum plumosum, did recover). The recovery patterns were dependent on post-disturbance conditions, and markedly influenced by a particular rainy season and a fire during one of the dry seasons. In addition to species effects, the treatments induced changes in spatial patterning and associated micro-scale hydrology. These effects persisted in the 90% removal treatment. In this regard the results are scale-dependent, and the same percentage removals at different scales (e. g. 5 × 5 m patches rather than tuft × tuft scale) would lead to differences in ability to recover. In terms of value to livestock the selective 90% removal treatment was in a poor state at the end of die experiment. In all treatments die trajectory of species changes was back towards the controls, but the selective 90% plots were fully re-vegetated before this could be achieved. In these plots, the final steps to complete recovery will occur only after death of established new tufts.  相似文献   

7.
Long-term (21-30 years) erosional responses of rainforest terrain in the Upper Segama catchment, Sabah, to selective logging are assessed at slope, small and large catchment scales. In the 0.44 km(2) Baru catchment, slope erosion measurements over 1990-2010 and sediment fingerprinting indicate that sediment sources 21 years after logging in 1989 are mainly road-linked, including fresh landslips and gullying of scars and toe deposits of 1994-1996 landslides. Analysis and modelling of 5-15 min stream-suspended sediment and discharge data demonstrate a reduction in storm-sediment response between 1996 and 2009, but not yet to pre-logging levels. An unmixing model using bed-sediment geochemical data indicates that 49 per cent of the 216 t km(-2) a(-1) 2009 sediment yield comes from 10 per cent of its area affected by road-linked landslides. Fallout (210)Pb and (137)Cs values from a lateral bench core indicate that sedimentation rates in the 721 km(2) Upper Segama catchment less than doubled with initially highly selective, low-slope logging in the 1980s, but rose 7-13 times when steep terrain was logged in 1992-1993 and 1999-2000. The need to keep steeplands under forest is emphasized if landsliding associated with current and predicted rises in extreme rainstorm magnitude-frequency is to be reduced in scale.  相似文献   

8.
9.
We examined the effect of selective logging and corresponding forest canopy loss on arboreal ant diversity in a tropical rainforest. Arboreal ants were collected from an unlogged forest plot and from forest plots selectively logged 14 years and 24 years earlier in Danum Valley, Sabah, Malaysia, using a canopy fogging method. Selective logging was associated with a significant decrease in canopy cover and an increase in understory vegetation density relative to unlogged forest. Our study showed that selective logging in primary forest might not dramatically decrease total species number and overall abundance of arboreal ants; however, it may influence the species composition and dominance structure of the ant community, accompanied by an increase in abundance of shrub‐layer species and trophobiotic species. In view of the results of this study, management techniques that minimize logging impact on understory vegetation structure are likely to help maintain the conservation value of logged forests for arboreal ants. Our results also suggest that accurate assessment of the impacts on biodiversity should not be based only on measurement of species number and overall abundance, but also on analysis of species composition and community structure.  相似文献   

10.
11.
12.
13.
Alli E  Ford JM 《DNA Repair》2012,11(5):522-524
The basal-like subtype of breast cancers, including those that contain germline mutations in BRCA1, tend to be triple-negative (i.e. lack expression of estrogen and progesterone receptors and lack overexpression/amplification of the HER2/neu oncogene), which renders them relatively insensitive to existing "targeted" therapy. BRCA1-mutated and basal-like breast cancers harbor compromised ability for repairing oxidative DNA damage by the DNA base-excision repair pathway. We found that this defective repair mechanism predicts sensitivity to elesclomol, an experimental therapeutic that produces elevated levels of oxidative DNA damage. In conclusion, BRCA1-mutated and/or basal-like breast cancers may benefit from treatment regimens that include elesclomol.  相似文献   

14.
Selective logging is practiced extensively within tropical rainforests of south‐east Asia, and its impact on local biodiversity is well documented. Little is known, however, about the impact of selective logging on patterns of spatial heterogeneity of species. We set out to test the hypothesis that selective logging will lead to a homogenization of the associated faunal assemblages, using moths (Lepidoptera) as our subject taxa. Large‐scale transects were established within primary and post‐logging lowland mixed dipterocarp rainforests around the Danum Valley Conservation Area and surroundings, Sabah, Malaysia (4°50′N–5°00′N and 117°35′E–117°45′E). Five study sites were located within each habitat with geometrically increasing inter‐site distances. Macro‐moths plus Pyraloidea were sampled by light trapping in 2007 and 2008. Vegetation state was also measured at each site. A clear distance–decay relationship (decreasing assemblage similarity with increasing geographic distances) was observed in primary forest but was absent in the post‐logging forest. Large, comparable numbers of macro‐moth species were found in both primary and post‐logging forests. There were no significant differences in moth assemblage composition between primary and post‐logging forests. There are important structural differences between primary and post‐logging forests reflected in the moth assemblages. A two‐stage hypothesis combining both neutral and niche concepts is probably the most parsimonious explanation of these results. First, the composition of the moth assemblage is almost certainly determined locally by the variety of plant–hosts available to larvae, with the plants representing important niche dimensions for the moth species. Second the turnover (or lack of same) in the underlying plant assemblage probably reflects clumping and, in turn, dispersal capacity of the commoner plants in each forest type. Although the impact of selective logging may be subtle, this study suggests that selective logging results in the spatial homogenization of macro‐moth assemblages.  相似文献   

15.
In response to geohistorical events from the Mesozoic through the Tertiary with contraction of mesic forest to southwestern and eastern montane and coastal regions, and expansion of woodlands and xeric shrublands, nobreak Australian spiders today comprise relict families and genera (confined to Gondwanan habitats and refuges) along with later evolved representatives which have adapted to changing environments. Tropical relicts also persist in refugia in the arid interior while some spiders (both mygalomorphs and araneomorphs) have adapted to arid conditions, mainly through specialized behaviours. Although fire has become increasingly a phenomenon of the Australian environment it is doubtful whether any spiders are adapted to fire per se. European settlement has impacted differentially on relictual and later evolved representatives; a few species, including the funnelweb (Atraxrobustus) and redback spider (Latrodectus hasselti) have benefited through enhanced habitat opportunities and some species of Badumna and other genera have become synanthropic. It is suggested that conservation strategies need to consider the ecoevolutionary history of particular spiders and their natural vulnerability or resilience to environmental factors.  相似文献   

16.
Ten water-filled tree holes in a subtropical rainforest were emptied out thereby imposing a major perturbation on the community of organisms which occupied these habitat units. During the process of food web reassembly following this disturbance, the average number of predator species in the web increased as did the average number of prey species. Predator-prey ratios increased in magnitude with the number of days after the disturbance. Furthermore, the characteristic mean predator-prey ratio of the original community was gradually restored as the food web reassembled. The number of prey species was found to be a better predictor of the number of predator species during community recovery than vice versa. The increasing number of trophic links in the food web over the period of reassembly, due mainly to the increase in the number of predacious species in the web, provides a good overall measure of community recovery. The paper discusses the use of relationships among the food web statistics described within a model of food web reassembly. Such a model can be used to assess the rate of recovery of a community after a disturbance of the food web at the regional level of resolution. Further, the question of whether or not the rate of community recovery can be used to estimate ecosystem recovery with the aid of food web statistics is examined.  相似文献   

17.
18.
Isaiah Owiunji 《Ostrich》2013,84(1-2):216-219
Owiunji, I. 2000. Changes in avian communities of Budongo Forest Reserve after 70 years of selective logging. Ostrich 71 (1 & 2): 216–219.

Budongo Forest Reserve, located in the west of Uganda, has been selectively logged for timber for over 70 years, and has a well documented management history. Changes in the avian community, species diversity and relative densities were assessed in two unlogged and three logged and arboricidally treated compartments. Tree-species diversity was highest in the disturbed forest. Over 100 forest bird species were recorded (including a new record for East Africa, Puvel's Illadopsis Illadopsis puveli. Both point counts and mist-netting showed that bird species diversity was higher in the logged and treated than in the unlogged forest. Five species had significantly higher densities in logged forest, three species had significantly higher densities in unlogged forest and 14 species showed no significant change in densities. The response of Budongo Forest birds to disturbance was species-specific.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号