首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic covariance structure for life-history characters in two populations of cyclically parthenogenetic Daphnia pulex indicates considerable positive correlation among important fitness components, apparently at odds with the expectation if antagonistic pleiotropy is the dominant cause of the maintanence of genetic variation. Although there is no genetic correlation between offspring size and offspring number, present growth and present reproduction are both strongly positively correlated genetically with future reproduction, and early maturity is genetically correlated with larger clutch size. Although the ubiquity of antagonistic pleiotropy has been recently questioned, there are peculiarities of cyclical parthenogenesis that could lead to positive life-history covariance even when negative covariance would be expected in a similar sexual species. These include the influence of nonadditive gene action on evolution in clonally reproducing organisms, and the periodic release of hidden genetic variance within populations of cyclical parthenogens. Examination of matrix similarity, using the bootstrap for distribution-free hypothesis testing, reveals no evidence to suggest that the genetic covariance matrices differ between the populations. However, there is considerable evidence that the phenotypic and environmental covariance matrices differ between populations. These results indicate approximate stability of the genetic covariance matrix within species, an important assumption of many phenotypic evolution models, but should caution against the use of phenotypic in place of genetic covariance matrices.  相似文献   

2.
Proportionality of phenotypic and genetic distance is of crucial importance to adequately focus on population history and structure, and it depends on the proportionality of genetic and phenotypic covariance. Constancy of phenotypic covariances is unlikely without constancy of genetic covariation if the latter is a substantial component of the former. If phenotypic patterns are found to be relatively stable, the most probable explanation is that genetic covariance matrices are also stable. Factors like morphological integration account for such stability. Morphological integration can be studied by analyzing the relationships among morphological traits. We present here a comparison of phenotypic correlation and covariance structure among worldwide human populations. Correlation and covariance matrices between 47 cranial traits were obtained for 28 populations, and compared with design matrices representing functional and developmental constraints. Among-population differences in patterns of correlation and covariation were tested for association with matrices of genetic distances (obtained after an examination of 10 Alu-insertions) and with Mahalanobis distances (computed after craniometrical traits). All matrix correlations were estimated by means of Mantel tests. Results indicate that correlation and covariance structure in our species is stable, and that among-group correlation/covariance similarity is not related to genetic or phenotypic distance. Conversely, genetic and morphological distance matrices were highly correlated. Correlation and covariation patterns were largely associated with functional and developmental factors, which probably account for the stability of covariance patterns.  相似文献   

3.
Quantitative genetic theory indicates that genetic covariance patterns among life history characters should have played an important role as genetic constraint in life history evolution. Highly positve (and negative) genetic correlations between larval development time (or larval growth rate) and adult size characters were detected by means of sib analysis for the small white butterfly Pieris rapae crucivora. The genetic associations suggested that evolution of developmental characteristics and adult phenotypic traits were constrained by pleiotropy. The positive genetic correlations between development time and adult body size may be compatible with the trade-off between them, but the negative genetic correlations between larval growth rate and adult body size are not predicted from theories of optimal energy allocation. That phenotypic correlations drastically differed from the genetic correlations indicates limitations of evolutionary inferences based only on phenotypic variation.  相似文献   

4.
Similarity of genetic and phenotypic variation patterns among populations is important for making quantitative inferences about past evolutionary forces acting to differentiate populations and for evaluating the evolution of relationships among traits in response to new functional and developmental relationships. Here, phenotypic co variance and correlation structure is compared among Platyrrhine Neotropical primates. Comparisons range from among species within a genus to the superfamily level. Matrix correlation followed by Mantel's test and vector correlation among responses to random natural selection vectors (random skewers) were used to compare correlation and variance/covariance matrices of 39 skull traits. Sampling errors involved in matrix estimates were taken into account in comparisons using matrix repeatability to set upper limits for each pairwise comparison. Results indicate that covariance structure is not strictly constant but that the amount of variance pattern divergence observed among taxa is generally low and not associated with taxonomic distance. Specific instances of divergence are identified. There is no correlation between the amount of divergence in covariance patterns among the 16 genera and their phylogenetic distance derived from a conjoint analysis of four already published nuclear gene datasets. In contrast, there is a significant correlation between phylogenetic distance and morphological distance (Mahalanobis distance among genus centroids). This result indicates that while the phenotypic means were evolving during the last 30 millions years of New World monkey evolution, phenotypic covariance structures of Neotropical primate skulls have remained relatively consistent. Neotropical primates can be divided into four major groups based on their feeding habits (fruit-leaves, seed-fruits, insect-fruits, and gum-insect-fruits). Differences in phenotypic covariance structure are correlated with differences in feeding habits, indicating that to some extent changes in interrelationships among skull traits are associated with changes in feeding habits. Finally, common patterns and levels of morphological integration are found among Platyrrhine primates, suggesting that functional/developmental integration could be one major factor keeping covariance structure relatively stable during evolutionary diversification of South American monkeys.  相似文献   

5.
Do genetic correlations among phenotypic characters reflect developmental organization or functional coadaptation of the characters? We test these hypotheses for the wing melanin pattern of Pieris occidentalis butterflies, by comparing estimated genetic correlations among wing melanin characters with a priori predictions of the developmental organization and the functional (thermoregulatory) organization of melanin pattern. There were significant broad-sense heritabilities and significant genetic correlations for most melanin characters. Matrix correlation tests revealed significant agreement between the observed genetic correlations and both developmental and functional predictions in most cases; this occurred even when the overlap between developmental and functional predictions was eliminated. These results suggest that both developmental organization and functional coadaptation among melanin characters influence the genetic correlation structure of melanin pattern in this species. These results have two important implications for the evolution of melanin pattern in P. occidentalis and other butterflies: 1) most phenotypic variation in pattern may reflect variation among, rather than within, sets of developmentally homologous wing melanin characters; and 2) in a changing selective environment, genetic correlations may retard the disruption of functionally coupled melanin characters, thus affecting the evolutionary response to selection.  相似文献   

6.
Bulbils and seeds collected from Allium vineale plants from natural populations were grown under uniform conditions. The bulbil-derived offspring represented the parental generation, whereas the seed-derived offspring represented the sexually produced offspring generation. Molecular markers were used to identify maternal genets. Variation in traits determining the allocation to sexual and asexual reproduction was partitioned among genets and ramet families in the parental and offspring generations. From observations of a release of genetic variation and slippage in the mean phenotype in the offspring generation, we inferred that there exists extensive genetic disequilibrium for reproductive traits in A. vineale populations, that most of the genetic variance is because of dominance effects, and that natural selection favours a reduced allocation to sexual reproduction. No genetic correlation between sexual and asexual allocation traits was found. We discuss the implications of these results with respect to the evolution of a mixed reproductive system in A. vineale.  相似文献   

7.
承德光秃山不同海拔油松居群遗传多样性   总被引:2,自引:0,他引:2  
为了解光秃山不同海拔下天然油松居群之间的遗传差异及探求遗传多样性与土壤因子的关联,为油松种源筛选和管理提供参考,本研究运用ISSR技术,对位于河北承德辽河源光秃山4个不同海拔油松天然居群共118个植株个体的遗传多样性进行分析。13个引物共扩增出177条清晰的条带,种群多态位点百分比(PPL)为60.2775%,Nei’s基因多样性指数(h)为0.2171,Shannon信息指数(I)为0.3222;不同种群遗传变异水平随海拔差异呈规律性变化,表现为沿海拔升高而呈低-高-低的分布规律,其中1354~1274 m范围的遗传多样性水平最高;在物种水平上油松具有较高的遗传多样性(PPL=98.33%,h=0.38142,I=0.5550),种群间的遗传分化系数Gst=0.6562。利用AMOVA软件对遗传变异的等级剖分结果表明,种群间有显著的遗传分化,约2/5的遗传变异存在种群间,种群内占3/5。Pearson相关分析表明,油松居群内遗传多样性与海拔、土壤养分(有机质、速效磷、速效钾含量)之间存在显著或一定的相关关系。Mantel检验结果显示,油松居群遗传距离与海拔差距、土壤养分因子的分异存在一定相关性。以上结果表明不同海拔区域的生态因子、低基因流等对油松居群间的遗传分化影响较大。  相似文献   

8.
We investigated population dynamics, genetic diversity and spatial structure in the aphid species Macrosiphoniella tanacetaria, a specialist herbivore feeding on tansy, Tanacetum vulgare. Tansy plants (genets) consist of many shoots (ramets), and genets are grouped in sites. Thus, aphids feeding on tansy can cluster at the level of ramets, genets and sites. We studied aphid population dynamics in 1997 and 2001 and found that within sites: (i). at any time, aphids used only a fraction of the available ramets and genets; (ii). at the level of ramets, most aphid colonies survived only one week; (iii). at the level of genets, mean survival time was less than 4 weeks; and (iv). colonization and extinction events occurred throughout the season. We sampled aphids in seven sites in the Alsace region, France (4-45 km apart) and two sites in Germany in 1999 to study genetic structure within and between populations. Genetic analyses using nine microsatellite loci showed that: (i). genotypic variability was high, (ii). none of the populations was in Hardy-Weinberg equilibrium, (iii). heterozygote deficits and linkage disequilibria were frequent, and (iv). all populations were genetically differentiated, even at a small geographical scale. Renewed sampling of the Alsace sites in 2001 showed that three populations had become extinct and significant genetic changes had occurred in the remaining four populations. The frequencies of extinction and colonization events at several spatial scales suggest a hierarchical metapopulation structure for M. tanacetaria. Frequent population turnover and drift are likely causes for the genetic differentiation of M. tanacetaria populations.  相似文献   

9.
Clonal diversity within plant populations is affected by factors that influence genet (clone) survival and seed recruitment, such as resource availability, disturbance, seed dispersal mechanism, propagule predation and the age of the population. Here we studied a population of Potamogeton pectinatus, a pseudo-annual aquatic macrophyte. Within populations reproduction appears to be mainly asexually through subterranean propagules (tubers), while recruitment via seeds is believed to be relatively unimportant. RAPD markers were used to analyse clonal diversity and genetic variation within the population. Ninety-seven genets were identified among 128 samples taken from eight plots. The proportion of distinguishable genets (0.76) and Simpson's diversity index (0.99) exhibited high levels of clonal diversity compared to other clonal plants. According to an analysis of molecular variance (amova) most genetic variation occurred between individuals within plots (93-97%) rather than between plots (8-3%). These results imply that sexual reproduction plays an unexpectedly important role within the population. Nevertheless, autocorrelation statistics revealed a spatial genetic structure resulting from clonal growth. In contrast to genetic variation, clonal diversity was affected by several ecological factors. Water depth and silt content had direct negative effects on clonal diversity. Tuber predation by Bewick's swans had an unexpected indirect negative effect on clonal diversity through reducing the tuber-bank biomass in spring, which on its turn was positively correlated to clonal diversity. The disturbance by swans, therefore, did not enhance seed recruitment and thus clonal diversity; on the contrary, heavily foraged areas are probably more prone to stochastic loss of genets leading to reduced clonal diversity.  相似文献   

10.
In clonal plants, vegetative reproduction and clonal architecture can produce unusual population structures including populations composed of a single genetic individual and mosaics of discrete or intermingled genets. Fragaria chiloensis is a rapidly and diffusely spreading, stoloniferous, perennial herb that forms relatively isolated populations on coastal sand dunes in California. We predicted that populations would consist of a few, large, intermingled genets; and that genetic and spatial distances would be more closely correlated for clonal fragments than for genets. Using allozyme markers from four enzyme systems (Est, LAP, PGI, and TO), we measured genotypic differences among fragments in a population on the central coast of California. Contrary to predictions, the population contained numerous genets, and most were found only within areas of 10 × 10 m. However, fragments of some genets did occur at least 80 m apart, and genets intermingled. Genetic and spatial distances were correlated for both genets and fragments. These results suggest that clonal growth and sexual reproduction are both important in structuring this population.  相似文献   

11.
Li  Ang; Ge  Song 《Annals of botany》2001,87(5):585-590
Genetic variation and clonal diversity of seven Psammochloavillosa(Poaceae) populations from northwest China were investigatedusing inter simple sequence repeat (ISSR) markers. Of the 84primers screened, 12 produced highly reproducible ISSR bands.Using these primers, 173 discernible DNA fragments were generatedwith 122 (70.5%) being polymorphic, indicating considerablegenetic variation at the species level. In contrast, there wererelatively low levels of polymorphism at the population levelwith the percentage of polymorphic bands (PPB) ranging from6.1 to 26.8. Analysis of molecular variance (AMOVA) showed thata large proportion of genetic variation (87.46%) resided amongpopulations, while only 12.54% resided among individuals withinpopulations. Clonal diversity was also high with 98 genets beingdetected from among 157 individuals using 12 ISSR primers. Theevenness of distribution of genotypes in P. villosa populationsvaried greatly, with all of the genotypes being local ones.No significant differences in genetic or clonal diversity werefound between populations in mobile or fixed dunes. The mainfactor responsible for the high level of differentiation amongpopulations and the low level of diversity within populationsis probably the clonal nature of this species, although selfingmay also affect the population genetic structure to some extent.The efficiency of ISSRs in identifying genetic individuals wasmuch higher than that of allozymes. An approximately asymptoticcorrelation was found between the number of genets detectedand the number of polymorphic loci used, suggesting that useof a high number of polymorphic bands is critical in genet identification.Copyright 2001 Annals of Botany Company Psammochloa villosa, ISSRs, genetic variation, clonal diversity  相似文献   

12.
Research on populations from radioactively contaminated areas around Chornobyl has produced ambiguous results for the presence of radiation effects. More studies are needed to provide information on whether radiation exposure at Chornobyl significantly affected genetic diversity in natural populations of various taxa. Eleven and nine variable microsatellite loci were used to test for differences in genetic diversity between reference and Chornobyl populations of two cattail species (Typha angustifolia and Typha latifolia, respectively) from Ukraine. Our purpose was to determine whether radiation had a significant impact on genetic diversities of the Chornobyl Typha populations, or if their genetic composition might be better explained by species demography and/or changes in population dynamics, mainly in sexual and asexual reproduction. Populations closest to the reactor had increased genetic diversities and high number of genets, which likely were due to factors other than radiation including increased gene flow among Chornobyl populations, enhanced sexual reproduction within populations, and/or origin of the genets from seed bank. Both Typha species also demonstrated small but significant effects associated with latitude, geographical regions, and watersheds. Typha's demography in Ukraine possibly varies with these three factors, and the small difference between Chornobyl and reference populations of T. latifolia detected after partitioning the total genetic variance between them is probably due primarily to these factors. However, the positive correlations of several genetic characteristics with radionuclide concentrations suggest that radiation may have also affected genetics of Chornobyl Typha populations but much less than was expected considering massive contamination of the Chornobyl area.  相似文献   

13.
By analysing patterns of phenotypic integration and multivariate covariance structure of five metric floral traits in nine Iberian populations of bumblebee‐pollinated Helleborus foetidus (Ranunculaceae), this paper attempts to test the general hypothesis that pollinators enhance floral integration and selectively modify phenotypic correlations between functionally linked floral traits. The five floral traits examined exhibited significant phenotypic integration at all populations, and both the magnitude and the pattern of integration differed widely among populations. Variation in extent and pattern of integration was neither distance‐dependent nor significantly related to between‐population variation in taxonomical composition and morphological diversity of the pollinator assemblage. Patterns of floral integration were closer to expectations derived from consideration of developmental affinities between floral whorls than to expectations based on a pollinator‐mediated adaptive hypothesis. Taken together, results of this study suggest that between‐population differences in magnitude and pattern of floral integration in H. foetidus are probably best explained as a consequence of random genetic sampling in the characteristically small and ephemeral populations of this species, rather than reflecting the selective action of current pollinators.  相似文献   

14.
Pueraria lobata (kudzu), a clonal, leguminous vine, is invading the southeastern United States at a rate of 50 000 ha per year. Genetic variability and clonal diversity were measured in 20 southeastern U.S. populations using 14 allozyme loci. Within its U.S. range, 92.9% of the loci were polymorphic and overall genetic diversity was 0.290. Such high levels of genetic diversity are consistent with its history of multiple introductions over an extended period of time. The average proportions of polymorphic loci and genetic diversity within populations were 55.7% (range = 28.6–85.7%) and 0.213 (range = 0.114–0.317), respectively. The proportion of total genetic diversity found among populations was similar to species with equivalent life history characters (GST = 0.199). No regional patterns of variation were seen. The number of putative genotypes in each population ranged from 2 to 26. Mean genotypic diversity was 0.694, ranging from 0.223 to 0.955. Such high levels of genotypic diversity indicate that local sites are often colonized by several propagules (most likely seeds) and/or that sexual reproduction occurs within populations after establishment. An excess of heterozygosity was observed in populations with few unique genets, implying that selection for highly heterozygous individuals may occur in populations of P. lobata.  相似文献   

15.
BACKGROUND AND AIMS: The mode of reproduction (sexual vs. asexual) is likely to have important effects on genetic variation and its spatial distribution within plant populations. An investigation was undertaken of fine-scale clonal structure and diversity within patches of Ilex leucoclada (a clone-forming dioecious shrub). METHODS: Six patches were selected in a 1-ha plot previously established in an old-growth beech forest. Two of the selected patches were composed predominantly of stems with male flowers (male patch), and two contained stems with predominantly female flowers (female patch). The remaining two patches contained stems with male flowers and stems with female flowers in more or less equal proportions (mixed patch). Different genets were distinguished using random amplified polymorphic DNA (RAPD) markers. KEY RESULTS: One hundred and fifty-six genets with different RAPD phenotypes were identified among 1928 stems from the six patches. Among the six patches, the male patches had the lowest clonal diversity, and the mixed patches had the highest. Distribution maps of the genets showed that they extended downhill, reflecting natural layering that occurred when stems were pressed to the ground by heavy snow. In every patch, there were a few large genets with many stems and many small genets with a few stems. CONCLUSION: The differences in clonal diversity among patches may be due to differences in seedling recruitment frequencies. The skewed distribution of genet size (defined as the number of stems per genet) within patches may be due to differences in the timing of germination, or age (with early-establishing genets having clear advantages for acquiring resources) and/or intraspecific competition.  相似文献   

16.
Phenotypic variation in trait means is a common observation for geographically separated populations. Such variation is typically retained under common garden conditions, indicating that there has been evolutionary change in the populations, as a result of selection and/or drift. Much less frequently studied is variation in the phenotypic covariance matrix (hereafter, P matrix), although this is an important component of evolutionary change. In this paper, we examine variation in the phenotypic means and P matrices in two species of grasshopper, Melanoplus sanguinipes and M. devastator. Using the P matrices estimated for 14 populations of M. sanguinipes and three populations of M. devastator we find that (1) significant differences between the sexes can be attributed to scaling effects; (2) there is no significant difference between the two species; (3) there are highly significant differences among populations that cannot be accounted for by scaling effects; (4) these differences are a consequence of statistically significant patterns of covariation with geographic and environmental factors, phenotypic variances and covariances increasing with increased temperature but decreasing with increased latitude and altitude. This covariation suggests that selection has been important in the evolution of the P matrix in these populations Finally, we find a significant positive correlation between the average difference between matrices and the genetic distance between the populations, indicating that drift has caused some of the variation in the P matrices.  相似文献   

17.
Three Cypripedium calceolus populations were observed in the Biebrza National Park (north-east Poland) for 11 years (1989–99). The populations differed in the number of genets and ramets and in their dynamics. Differences were in the proportion of flowering ramets, number of flowers, fruiting and recruitment. Fruiting and recruitment are low in populations of Cypripedium calceolus . Fruiting is probably pollinators limited, and recruitment is limited by environmental conditions. Changes in the size of populations of this species are caused by the following processes: changes in the number of genets (their appearance and death), changes in the size of clones (growth of individuals and their disintegration, death of individual ramets), dormancy of genets, and animal pressure. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 67–77.  相似文献   

18.
Gagea lutea and G. spathacea are spring geophytes naturally co-occurring in woodlands, characterised by contrasting reproductive strategies probably caused by divergent ploidy levels. The hexaploid G. lutea relies on vegetative reproduction by subterranean bulbils in young stages but completely switches to sexual reproduction once a certain bulb size is attained. The nonaploid G. spathacea seems to be sterile and reproduces only vegetatively; the plants continue to form bulbils even in the rare event of flowering. This study used AFLP genotyping to investigate the consequences of these reproductive strategies for genetic diversity. For 150 and 100 samples from three Western Pomeranian populations of G. lutea and G. spathacea, respectively, AFLP fingerprints were analysed for three different spatial scales, the patch, the transect, and the region. Applying a threshold for genotypic identity of <0.05 simple matching distance, 22?C30 genets were detected in the three G. lutea populations, with all genets confined to single populations. Clonal genets consisted of 2?C9 samples and extended over up to 28?m, but never occupied the whole length of a transect; 67?C75% of all patches had different genets. Genetic distances between genets within populations were similar to those recorded between populations. Genotyping of G. spathacea revealed a single clonal genet for all three populations sampled within a distance of 30?km. The absent genetic diversity confirms the suspected sexual sterility. Gagea spathacea seems to be one of the few non-apomictic, fully clonal vascular plants able to occupy a significant range solely by dispersal of vegetative diaspores.  相似文献   

19.
Solidago altissima and S. gigantea were introduced from North America to Europe ~250 yr ago and are now considered aggressive weeds in abandoned fields and conservation areas. We studied patterns of genetic differentiation in these two species along their present latitudinal range in Europe (44-61 degrees N). Two generations of clonally propagated ramets from randomly selected genets of 24 populations of each species were grown in a common-garden experiment at latitude 47 degrees N from 1991 to 1992. Both species showed significant variation among populations in morphological and life-history characters: at this southern location, plants from northern populations were smaller and flowered earlier than plants from southern populations. The gradient of clinal variation was more pronounced in the second year of cultivation than in the first and was steeper in S. altissima than in S. gigantea. Within-population variation among genotypes was significant tot most characters in the case of S. altissima. Phenological rate (reciprocal of days to flowering) and size at maturity showed a significant negative correlation among populations bot not among genotypes within populations, indicating that genetic trade-offs may occur at one but not another infraspecific level. We suggest that the pattern of among-population variation reflects rapid adaptive population differentiation after introduction of the species to Europe.  相似文献   

20.
羊草种群克隆多样性的初步研究   总被引:9,自引:0,他引:9       下载免费PDF全文
 采用水平淀粉凝胶电泳技术检测了松嫩草原上两种叶色类型(灰绿型和黄绿型)羊草(Leymus chinensis)种群的克隆多样性。羊草种群中克隆多样性较高,Simpson指数平均为0.983,97.7% 的基因型为局部分布;在克隆特性上,灰绿型和黄绿型羊草也明显不同,黄绿型种群的克隆多样性低于灰绿型。由基株数据计算的种群遗传多样性与由分株计算的结果一致,进一步确认了黄绿型和灰绿型羊草间存在着明显的遗传分化。种群中不时有实生苗补充及环境异质性引起的分化选择作用可能是维持种群内基因型多样性的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号