首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire severity affects vegetation and seed bank in a wetland   总被引:3,自引:0,他引:3  
Questions: How does the severity of prescribed fires affect vegetation and seed bank in a wetland? Location: A fire‐prone reed swamp in northern Japan (250 ha, 40°49′N, 141°22′E, <10 m a.s.l.). Methods: Vegetation, biomass and seed bank were monitored for the 2 yr after annual prescribed fires were discontinued. Plant communities were placed into three categories based on fire severity: high (H) – fire consumed litter completely; moderate (M) – fire removed standing litter but left wet fallen litter; and low (L) – fire incompletely removed standing litter and did not remove fallen litter. Soil samples were collected in autumn 2007 and early summer 2008, and germinable seed bank was investigated by greenhouse trials. Results: High fire severity increased diversity in the next growing season by the establishment of short herbs in the standing vegetation. The biomass of forbs and grasses was greater in H where Phragmites australis biomass was reduced. The density of seed bank was >30 000 seeds m?2 throughout all the treatments. Perennial plants were dominant in the vegetation, while annuals, biennials and rushes were dominant in the seed bank. Small seeds were more abundant in the soil than in the litter. Qualitative and quantitative similarities between seed bank and the vegetation were low, and tended to be higher in H. Conclusions: Fire contributed to the development of diverse standing vegetation via the positive effects on seed bank dynamics, and can be considered a tool to maintain species‐rich marshes.  相似文献   

2.
Large seed banks have been found in tropical dry forests and also in habitats with high seasonality in rainfall. However, patchily structured vegetation could induce great spatial variation in the seed bank. We characterized the seed bank in a patchy vegetation of restinga, a common type of coastal vegetation found in the Atlantic forest biome. We also evaluated whether there is any spatial variation between the litter and soil layer, bare sand, and the edge and center of vegetation patches with distinct species dominance. We found 104 seeds/m2 in the seed bank using a 5‐cm‐depth sampling. Seven out of 16 species found in the restinga seed bank germinated; two of these were found in the early stages of vegetation patches. We found a higher number of seeds at the edge than in the center of vegetation patches. However, there were no significant differences in the number of seeds in the seed bank between the litter and soil layer, and between vegetation patches with distinct species dominance. Bare sandy soils had lower seed bank densities than vegetation patches. A small seed bank size might be explained by the low proportion of seeds from herbaceous and woody species, which are pioneers in the Atlantic forest. However, seed bank might play an important role in the early stages of the successional process, due to the occurrence of the few species that are able to colonize new young vegetation patches.  相似文献   

3.
Question: Can the seed bank play a significant role in the restoration of plant communities of dry acidic dune grassland where fire has destroyed Ulex europaeus scrub? Location: Northern French Atlantic coast. Methods: One year after the fire, the seed bank and vegetation were sampled in 1 m × 1 m plots along three transects from the oldest scrub vegetation towards the grassland. Differences in species richness, seed density and contribution of ecological groups in the seed bank and vegetation along the transects were analysed. Results: Seed density and species richness in the seed bank decreased significantly from the grassland towards the centre of the scrub vegetation; 50% of the seed bank consisted of core species of the target plant community, such as Carex arenaria, Aira praecox, Rumex acetosella and Agrostis capillaris. Seeds of these species were also found in the deeper soil layers beneath the oldest scrub vegetation, indicating that they can be considered to be long‐term persistent. Beneath the youngest scrub vegetation, seeds of rare satellite target species also occurred. However, no target species were established on the burned site after one year, resulting in a large discrepancy between seed bank and vegetation. Conclusions: Although the seeds present in the soil indicate that restoration of the acidic grassland based on the seed bank is possible, additional management actions such as mowing and soil disturbance may be necessary to restrict resprouting of Ulex and to stimulate the germination of seeds of target species in the deeper soil layers.  相似文献   

4.
Soil-stored seed banks of grassland, fynbos and thicket, all growing on calcareous dunes and each subject to different disturbance regimes, were examined. Seed banks were determined from counts of germinants from 50 soil cores from each type. Aboveground estimates of plant species cover in 10 1-m2 plots were used in determining vegetation/seed bank similarities. There was no evidence for seed bank densities to be markedly higher in the most frequently disturbed community (grassland -4273 seeds/m2) than the least disturbed community (thicket - 3417 seeds/m2). Highest similarity between seed bank and above-ground vegetation composition in terms of species and growth form/life-span classes was recorded for grassland (CC = 50%). Lowest similarity (CC = 13%) was found in the less frequently disturbed thicket where no seeds of climax trees were recorded in the seed bank. A fynbos community on a north-facing (warm, dry) slope had intermediate-sized seed banks (1683 seeds/m2) with intermediate vegetation/seed bank similarity (CC = 46%). However, on the south-facing slope, which has a large post-fire ephemeral herb component, seed banks were larger (4518 seeds/m2) but less similar to above-ground vegetation (CC = 39%o). Ordination (DCA) of vegetation data from the four communities was different from an ordination of their seed bank data. Fynbos shrub species were absent from seed banks of both grassland and thicket, even though secondary succession proceeds from grassland, through fynbos to thicket. Their seed banks appear less persistent than those of European heath or Californian chaparral shrubs.  相似文献   

5.
Vegetation composition differs significantly between ancientand recent forest, due to slow colonization capacity of typical forest speciesand the higher abundance of early successional species in recent forest.However, little is known about differences in persistent seed bank compositionbetween ancient and recent forest and about the interaction between seed bankand vegetation in relation with forest age. We surveyed the seed bank and theunderstorey vegetationcomposition in transects from ancient to recent forest. Seed bank and fieldlayer vegetation characteristics and similarity between seed bank andvegetationwere analysed in relation to recent forest age and distance to the ancientforest. A total of 39 species and 14,911 seedlings germinated, whichcorresponds with a seed density of 12,426 seeds/m2.Total seed density is significantly higher in the youngest recent forest parcel(55 years). Also the seed bank composition in the youngest forest parceldifferssignificantly from the other parcels. After a longer period of reforestation,the seed bank approaches that of the ancient forest, suggesting seed bankdepletion, although the seed bank is permanently replenished to some extent byseed bank forming species from local disturbances. Seed bank composition doesnot change significantly with distance to the ancient forest. Similaritybetween seed bank and vegetation composition, nomatter the forest age, is very low, but decreases with increasing forest age.The most frequent species in the vegetation are absent in the seed bank andvice versa. The contribution of forest species is highin the vegetation and they almost not occur in the seed bank, while species offorest edges and clearings, and species of disturbed environments are morefrequent in the seed bank. The seed bank is mainly composed of earlysuccessional species of former forest stages or species which temporary occurinsmall-scale disturbances. The seed bank may enhance the negative effects ofearlysuccessional, mainly competitive species to the forest species richness in therecent forest. In this respect, forest management should minimise forestdisturbances, to prevent germination of competitive species form buriedseeds.  相似文献   

6.
Abstract. Hawaiian ecosystems are prone to invasion by alien plant species. I compared the seed rain, seed bank, and vegetation of a native Hawaiian forest to examine the potential role that seed ecology plays in allowing alien species to invade native forest. Absolute cover of seed plants in the forest was 126 %, annual seed rain was 5 713 seeds m-2 yr-1, and the mean density of seedlings emerging from the seed bank averaged across four seasons was 1 020/m2. The endemic tree Metrosideros polymorpha was the most abundant species in the vegetation, seed rain and winter seed bank. Overall, native seed plants comprised 95 % of the relative cover in the vegetation and 99 % of the seeds in the seed rain, but alien species comprised 67 % of the seeds in the seed bank. Alien species tended to form persistent seed banks while native species formed transient or pseudo-persistent seed banks. Dominance of the seed bank by alien species with persistent seed banks suggests that aliens are favorably placed to increase in abundance in the vegetation if the forest is disturbed.  相似文献   

7.
Miaojun Ma  Xianhui Zhou  Guozhen Du 《Flora》2010,205(2):128-134
We examined the role of the soil seed bank along a grazing disturbance gradient and its relationship with the vegetation of alpine meadows on the Tibet plateau, and discussed the implications for restoration. The seed bank had a high potential for restoration of species-rich vegetation; 62 species were identified in the vegetation and 87 in the seed bank, 39 species being common to both. Mean seed density was 3069–6105 viable seeds m−2. The density of buried seeds increased significantly with increasing disturbance, indicating that restoration of disturbed areas is not seed limited. Seed density and species richness decreased with depth. The proportion of perennial species decreased with decrease in disturbance both in seed bank and in vegetation. A large portion of species with persistent seeds in the disturbed areas indicate that this seed type can be regarded a strategy of adaptation to current disturbances. Detrended correspondence analysis (DCA) showed significant differences of species composition between seed bank and vegetation, except for the seriously disturbed site. Our results suggest that the establishment of new species in severely disturbed areas is more dependent on the seed bank. By contrast, the restoration in less-disturbed and mature meadows does not rely on seed banks, and the establishment of the vegetation in these communities is more likely to rely on seed dispersal from the standing vegetation and on species with vegetative reproduction.  相似文献   

8.
Abstract. The objective of this study was to investigate the effects of flooding and draw‐down on the germination from the coastal grassland seed banks and to determine whether the effect of flooding varies between the delta and the seashore. Seed bank samples were collected from three shore transects in SW Finland, two on the shore of the Baltic Sea and one on the delta of River Kokemäenjoki. Samples were germinated in non‐flooded and flooded conditions for over a month, after which both treatments were maintained in non‐flooded conditions. A total of 9267 seedlings of 47 species germinated and mean density of seeds in the soil was ca. 84 000/m2. Most of the seedlings were monocots (98%) and perennials (98%). Ca. 30–40% of the species found in the above‐ground vegetation had a seed bank including the majority of the most abundant species. The number of seeds and species richness increased as the organic layer became thicker. The organic layer was thicker in the seashore samples and the seed bank was significantly larger than in the delta. The flooding and draw‐down treatment significantly increased the number of germinating seedlings in the seashore and also increased species richness in two transects, one in the delta and the other in the seashore. Two species, Schoenoplectus tabernaemontani and Typha latifolia, had significantly higher germination in the flooded treatment than in the non‐flooded. Apparently, many species in these coastal grasslands have adapted to flood disturbance and for seeds of some species flooding may work as a positive signal, possibly breaking dormancy.  相似文献   

9.
Abstract. This paper compares the regeneration by seeds of heath and meadow and studies relationships between the floristic composition of phases in the regeneration pathway. Seed densities in the seed rain and seed bank as well as the densities of emerged seedlings in gaps and in closed vegetation were greater in the meadow than in the heath. In the heath, environmental constraints hindered seedling emergence almost completely so seeds accumulated in the seed bank. In the meadow, the decrease in the seed bank was due to high seedling emergence. Within both plant communities, seedling emergence in gaps and in closed vegetation was comparable. In the meadow, the seed rain and seedling emergence in gaps, as well as the seed bank and seedling emergence in gaps were positively correlated. Differences in seed and adult plant sizes were reasons for the low correlation between the standing vegetation and the other phases. In DCA ordination the first axis separated the phase of seedling emergence in closed vegetation and seed bank. The second axis separated the standing vegetation from the other phases. The structure of the seed rain was more heterogeneous than that of other phases. In the heath, the standing vegetation and the seed rain were positively correlated. The ordination of these phases reflected the patchiness of standing vegetation and the ability of the diaspores of Betula nana to disperse over long distances.  相似文献   

10.
Abstract. The soil seed bank of the severely eroded Kondoa Irangi Hills, Tanzania was studied in order to determine the seed density and composition and to establish the relationship between seed bank and standing vegetation. The area had not been grazed for 15 yr prior to the study. A recently grazed area was used for comparison. The seed bank density (at 0 - 5 cm depth) ranged from 344 to 915 8 seeds/m2 in the dry season and 172 to 5107 seeds/m2 in the wet season. The seed bank was very heterogeneous, both spatially and temporally, and it showed significant variation in size and composition in both sampling periods. The species similarity between the seed bank and the above-ground vegetation in all plots was low (Sørensen's index = 0.00–0.44). The highest similarity was found in the recently grazed area. The seed bank was dominated by annuals and by early successional species. It is concluded that re-vegetating the hill slopes with woody vegetation by using the seed bank will be difficult because seeds of woody species were not found in the soil.  相似文献   

11.
Seed predation may reduce recruitment in populations that are limited by the availability of seeds rather than microsites. Fires increase the availability of both seeds and microsites, but in plants that lack a soil- or canopy-stored seed bank, post-fire recruitment is often delayed compared to the majority of species. Pyrogenic flowering species, such as Telopea speciosissima, release their non-dormant seeds more than 1 year after fire, by which time seed predation and the availability of microsites may differ from that experienced by plants recruiting soon after fire. I assessed the role of post-dispersal seed predation in limiting seedling establishment after fire in T. speciosissima, in southeastern Australia. Using a seed-planting experiment, I manipulated vertebrate access to seeds and the combined cover of litter and vegetation within experimental microsites in the 2 years of natural seed fall after a fire. Losses to vertebrate and invertebrate seed predators were rapid and substantial, with 50% of seeds consumed after 2 months in exposed locations and after 5 months when vertebrates were excluded. After 7 months, only 6% of seeds or seedlings survived, even where vertebrates were excluded. Removing litter and vegetation increased the likelihood of seed predation by vertebrates, but had little influence on losses due to invertebrates. Microsites with high-density vegetation and litter cover were more likely to have seed survival or germination than microsites with low-density cover. Recruitment in pyrogenic flowering species may depend upon the release of seeds into locations where dense cover may allow them to escape from vertebrate predators. Even here, conditions suitable for germination must occur soon after seed release for seeds to escape from invertebrate predators. Seed production will also affect recruitment after any one fire, while the ability of some juvenile and most adult plants to resprout after fire buffers populations against rapid declines when there is little successful recruitment.  相似文献   

12.
Abstract Seed germination is dependent on the interaction between the dormancy state of a seed and the presence of favourable environmental conditions. Thus, the spectacular pulse of seedling recruitment in many Australian vegetation communities following disturbances such as fire can be attributed to changes in microsite conditions and/or the dormancy‐breaking effect of the disturbance on accumulated seed banks. Grevillea rivularis is a threatened species endemic to the area immediately above Carrington Falls in the NSW Southern Highlands. Most of the population is confined to the riparian vegetation zone in woodland and heath, and is therefore subject to periodic disturbance from fire and flood. For this species, a pulse of seedling recruitment has been recorded after fire, flood and mechanical soil disturbance. The aims of this study were to examine the density and vertical distribution of the soil‐stored seed bank and to investigate the role of heat and scarification as cues for germination of fresh and soil‐stored seed. There was a large seed bank under the canopies of established individuals (194 ± 73 seeds m?2) and most seeds were found in the 0–2 cm and leaf‐litter layers of the soil profile. The germination response of soil‐stored and fresh seed was examined using a hierarchical series of laboratory experiments. Seeds of G. rivularis showed marked dormancy polymorphism. Thirty‐six percent of soil‐stored seed germinated without treatment, whereas no untreated fresh seeds germinated. Scarification or heating caused significant germination of dormant soil‐stored seed, but only scarification resulted in germination of dormant fresh seeds. These results highlight important differences in the dormancy state of soil‐stored and fresh seed. Thus, being a riparian species in a fire‐prone environment, the dormancy mechanisms in seeds of G. rivularis suit this species to disturbance by both fire and flood.  相似文献   

13.
The persistent soil seed bank (viable seeds >1 year) and standing vegetation were investigated in the upper alpine belt (3250 m) in the Andes of central Chile, 33° S. Nine species (eight in standing vegetation) were found in a total persistent seed bank of 899 seeds m−2. Seven additional species were represented by physically intact, non-viable seeds. Over 90% of the persistent seed bank was concentrated in Montiopsis sericea (Portulacaceae), Pozoa coriacea (Umbelliferae), Phacelia secunda (Hydrophyllaceae) and Oxalis compacta (Oxalidaceae). Examination of the seed/cover ratio revealed different propensities for persistent seed bank formation among species, and annuals formed persistent seed banks more frequently than perennial species. Abundance in the standing vegetation had predictive value for abundance in the persistent seed bank only when non-persistent seed bank species in the standing vegetation were discarded from the analysis. At the local scale, species diversity in the persistent seed bank and standing vegetation were correlated, but compositional similarity was low. Secondary down-slope dispersal promoted by frost heaving in combination with runoff, and life-form correlates are discussed as possible factors accounting for poor correspondence between the persistent seed bank and the standing vegetation at a local scale. The high Andean seed bank is similar to or larger than that reported for two Arctic tundra sites, but smaller than for a northern hemisphere subalpine site. If seed bank size is considered in relation to plant cover, the Andean seed bank greatly exceeds that of one Arctic site. Our study constitutes the first demonstration of a sizable persistent seed bank at an alpine site in the South American Andes and in southern hemisphere temperate mountains in general. Received: 26 May 1998 / Accepted: 21 November 1998  相似文献   

14.
Seed banks are important in wetland vegetation, but their role on lakeshores has received little attention. The influence of seed banks on lakeshore vegetation was investigated near eastern Georgian Bay in Ontario, where there is a rich shoreline and aquatic flora. Some lakeshore species found there can be considered “coastal plain disjuncts” similar to those of southwestern Michigan and adjacent Indiana, and central Wisconsin. Matchedash Lake in Simcoe Co., Ontario, has a particularly rich assemblage of these shoreline species. Based on short-term records, and aging of drowned stumps, we demonstrated that yearly mean water levels can and have changed by more than a meter. Such water-level fluctuations partly result from beaver dams on the single outlet stream. Vegetation data collected in a low-water phase (1976) document a rich shoreline flora, largely absent in the present (1979) high-water phase. During this latter high-water phase, we collected 15 sediment sample units from each of six water depths (0–1.5 m). The sample, representing 0.32 m2 of lake bottom, was planted out in a greenhouse; 3,149 seedlings representing 41 species of vascular plants emerged. Six (Rhexia virginica, Rhynchospora capitellata, Panicum spretum, Xyris difformis, Polygonum cureyi, Linum striatum) are rare in Ontario. Estimated seed banks for individual species were as high as 6,500 seeds m“2. If another low-water phase occurs, a rich shoreline flora should again develop. We hypothesize that water-level fluctuations are essential to the long-term survival of these species.  相似文献   

15.

Questions

The degree to which renosterveld shrublands are fire‐dependent is currently unclear. To address this issue, the following questions were asked: (1) does smoke stimulate germination of soil‐stored seeds in renosterveld; (2) does recently‐burned renosterveld display changed composition and higher diversity than unburned vegetation; and (3) how do the species compositions of renosterveld soil seed banks and standing vegetation compare?

Location

Swartland, Cape Floristic Region, South Africa.

Methods

Soil seed bank samples from a north‐ and south‐facing slope were smoke‐treated and germinated to test for smoke‐stimulated germination. Burned standing vegetation was surveyed 16 months post‐fire, as was unburned vegetation on the same slopes. Seed bank species richness and density were compared between smoke‐treated and untreated samples within and between slopes. Burned and unburned standing vegetation were compared within and between slopes in terms of species richness, abundance and aerial cover. Compositional similarity of the seed banks and standing vegetation was assessed.

Results

Seed banks were dominated by annuals and graminoids. Smoke treatment had no effect, except for driving significantly higher species richness and seedling density in south‐facing slope perennial shrubs. Species richness and seedling density were significantly higher in seed banks on the south‐facing slope compared to the north‐facing slope. Burned standing vegetation exhibited significantly higher diversity than unburned vegetation. Annuals and graminoids displayed significantly higher species richness and aerial cover in burned renosterveld. The north‐facing slope contained less than half the number of species/m2 compared to the south‐facing slope. The seed banks and standing vegetation showed low to intermediate similarity (Sørensen = 31%–53%), but grouped close together on an NMDS plot, suggesting intermediate similarity overall.

Conclusions

Elevated germination of perennial shrubs in smoke‐treated seed bank samples and increased diversity of post‐fire standing vegetation suggest the renosterveld in this study shows elements of a fire‐driven system. Certain species only recruited in burned sites, suggesting fire‐stimulated germination. Aspect had a major influence on plant community composition, with the mesic south‐facing slope being more diverse than the xeric north‐facing slope. The similarity between the seed banks and standing vegetation was higher than previously shown for renosterveld, and appears to be higher than for fynbos.  相似文献   

16.
Abstract. The soil seed bank was investigated in four dry Afromontane forests of Ethiopia. At least 167 plant species were identified in the 0–9 cm soil layer with total densities ranging between 12 300 and 24 000 seeds/m2. Herbs were represented with the largest numbers of species and seeds in the seed bank, while the contribution of tree species was generally low. The overall vertical distribution of seeds was similar at all sites with the highest densities occurring in the upper three cm of soil and gradually decreasing densities with increasing depth. Relatively high densities also occurred in the litter layer. There were large differences in depth distribution between species, suggesting differences in seed longevity. A large number of species in dry Afromontane forests evidently store quantities of seeds in the soil and this is in contrast to the situation in most tropical rain forests, dry lowland forests and savannas, where both the number of seeds and the number of species are relatively small. It is possible that the strongly seasonal and unpredictable climate of this region may have selected for high levels of dormancy, and that herb regeneration is associated with small scale disturbance. The fact that most of the dominant tree species do not accumulate seeds in the soil suggests that their regeneration from seed would be unlikely if mature individuals disappeared. Most tree species have relatively large seeds and poor long-distance dispersal; this implies that restoration of Afromontane forests after destruction would be difficult. Since there is a diverse seed bank of the ground flora, this component of the vegetation would have a better chance of reestablishing. However, because most cleared forest land is used for agricultural crop production, it is probable that the seed bank will be depleted in only a few years. Therefore, the future of the Afromontane forest flora seems to depend on the successful conservation of the few fragments of remaining natural forest.  相似文献   

17.
Questions: How do species composition and abundance of soil seed bank and standing vegetation vary over the course of a post‐fire succession in northern heathlands? What is the role of seed banks – do they act as a refuge for early successional species or can they simply be seen as a spillover from the extant local vegetation? Location: Coastal Calluna heathlands, Western Norway. Methods: We analysed vegetation and seed bank along a 24‐year post‐fire chronosequence. Patterns in community composition, similarity and abundances were tested using multivariate analyses, Sørensen's index of similarity, vegetation cover (%) and seedling counts. Results: The total diversity of vegetation and seed bank were 60 and 54 vascular plant taxa, respectively, with 39 shared species, resulting in 68% similarity overall. Over 24 years, the heathland community progressed from open newly burned ground via species rich graminoid‐ and herb‐dominated vegetation to mature Calluna heath. Post‐fire succession was not reflected in the seed bank. The 10 most abundant species constituted 98% of the germinated seeds. The most abundant were Calluna vulgaris (49%; 12 018 seeds m?2) and Erica tetralix (34%; 8 414 seeds m?2). Calluna showed significantly higher germination the first 2 years following fire. Conclusions: Vegetation species richness, ranging from 23 to 46 species yr?1, showed a unimodal pattern over the post‐fire succession. In contrast, the seed bank species richness, ranging from 21 to 31 species yr?1, showed no trend. This suggests that the seed bank act as a refuge; providing a constant source of recruits for species that colonise newly burned areas. The traditional management regime has not depleted or destroyed the seed banks and continued management is needed to ensure sustainability of northern heathlands.  相似文献   

18.
Questions: Do soil seed banks of semi‐arid grasslands reassemble after abandonment from cultivation? Do seeds of native and exotic species persist in the soil? Does time since abandonment affect compositional similarity between the vegetation and seed bank? Does the seed bank contribute to resilience in the vegetation? Location: Native grasslands in northern Victoria, Australia. Methods: Seed bank sampling was conducted in spring and autumn over 3 yrs, across a 100‐yr chronosequence. Species richness, composition and germinant density were determined using the seedling emergence method. Seed persistence was assessed by comparing seed densities in spring and autumn. Seed bank composition was compared with the vegetation. Results: The spring seed bank was dominated at all stages by sedges and rushes; hence, native species richness and seed density were largely unaffected by abandonment. In autumn, grassland species contributed more to the seed bank, but richness was reduced after abandonment and showed little recovery, although seed density partially recovered. Seed bank composition showed some recovery in both seasons. Most species had low persistence in the soil. Compositional similarity between the vegetation and seed bank was greater in old fields than uncultivated grasslands in spring, but not autumn. Conclusions: Resilience varied among seed bank parameters and seed banks had low functional importance. Patterns in the seed bank followed, rather than caused, those in the vegetation. Thus, vegetation recovery cannot rely on the seed bank and persistent seeds were not the key mechanism of resilience in the vegetation.  相似文献   

19.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

20.
Seed banks were examined in a Taxodium distichum L.-Nyssa aquatica L. (cypress-tupelo) swamp forest and an adjacent bottomland hardwood forest on the floodplain of the Savannah River in South Carolina. Thirty 0.01 m2 soil cores were collected in each community at each of three sampling times: before seed fall, after seed fall, and after an early spring river level rise had inundated both communities. Germination and sieving techniques were used to enumerate seeds in each sample. Woody seed banks of the two communities were dissimilar in species composition with both underrepresenting the species composition of the standing vegetation. In contrast, herbaceous seed banks of both communities were similar in species composition with greater species diversity in the seed banks than in the standing vegetation. Both the herbaceous and woody seed banks of the hardwood community changed significantly in seed densities across the three collection dates. Densities increased from September to December, after seed fall for many species, but decreased in April after the early spring water level rise. Seed densities did not change significantly in the cypress-tupelo community across the three collections. Hydrologic regime appears to have a major influence on seed bank composition and dynamics in southeastern riverine swamps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号