首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allozyme variation was investigated in 17 Japanese populations of Campanula punctata, ten from the Izu Islands and seven in the mainland (Honshu). The data indicate that there are two groups, a mainland group and an island one, and that the systematically problematic Oshima Island (northernmost Izu island) populations are closely related to those of the other islands. Nei's genetic identity values among islands and among mainland populations were 0.95 and 0.97, respectively, while the value between island and mainland populations was 0.84, suggesting that the island populations are an independent species. Total genetic variation was nearly the same among island and mainland populations. However, the apportionment of variation within and among populations was considerably different; 14% of gene diversity exists among mainland populations, while 31% of the diversity exists among island populations. Mean outcrossing rates of self-incompatible mainland and Oshima populations are 0.62–0.79, supporting xenogamy; those in self-compatible island populations are 0.37–0.57 in the northern islands, indicating a mixed mating system, and 0.16–0.25 in southern ones, indicating dominant inbreeding. Total genetic diversity in each island population decreased with distance from the mainland. Genetic and geological data suggest that the ancestors of insular populations were founded on northern islands in a relatively ancient period and that they dispersed progressively to the southern ones. Chromosome number (2n = 34) and isozyme numbers indicate gene duplications in this species, which suggests it is an ancient polyploid.  相似文献   

2.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   

3.
Pandanus boninensis, endemic to the Ogasawara Islands, Japan, is distributed on both the older Bonin and younger Volcano Islands. In this study, we conducted population genetic analyses of P. boninensis on these islands to examine the population diversity and structure across old and young islands, to assess potential differences in population demography with island age, and to collect any evidence of migration between old and young islands. We found that the genetic diversity of expressed sequence tag (EST)–based microsatellite (SSR) markers, the nucleotide diversity of nuclear DNA sequences, and the haplotype diversity of chloroplast DNA on young islands were lower than those on old islands. Clustering analyses of EST‐SSR indicated that populations on old islands were strongly diverged from those on young islands. Approximate Bayesian computation analysis of EST‐SSR suggested that population expansion occurred on old islands while population reduction occurred on young islands. We also found evidence of migration among old islands (mostly from south to north), while it appears that there have been very few migration events between old and young islands. These differences could be due to the fact that young islands tend to be geographically isolated and support smaller populations that began a shorter time ago from limited founders. The P. boninensis populations on the Volcano Islands are interesting from an evolutionary perspective as they constitute a classic example of the early stages of progressive colonization on oceanic islands with small effective population sizes and low genetic diversity.  相似文献   

4.
Cyclamen balearicum is a self-compatible perennial herb endemic to the western Mediterranean Basin. This species occurs in five geographically isolated terrestrial islands in southern France and on four Balearic islands. In this study, we compare genetic variability and differentiation within and among 11 terrestrial island populations and 17 true island populations. Of nine readable enzyme loci, five were polymorphic in both terrestrial and true islands. F statistics showed a significant heterozygote deficiency in all populations, probably due to high levels of autonomous selfing, restricted gene flow, and subsequent genetic drift. Genetic diversity was higher in terrestrial islands than on the Balearic islands, suggesting that the Balearic islands were colonized when they were in contact with the continent. Population differentiation was greater among terrestrial islands (Fst = 0.417 and Gst = 0.344) than among true islands (Fst = 0.112 and Gst = 0.093). Furthermore, differentiation among populations on the Basses Cévennes terrestrial island was greater (Fst = 0.254) than among populations on the true island of Mallorca (Fst = 0.163). The greater genetic differentiation among terrestrial islands could have been caused by genetic bottlenecks associated with changes in climate and human land use that may have reduced population sizes more severely in terrestrial islands in southern France than on the Balearic islands.  相似文献   

5.
性选择、配偶外父亲身份确认程度、遗传变异性和保护   总被引:4,自引:0,他引:4  
Anders.P 《动物学报》2001,47(1):2-12
岛屿动物中的性选择强度不高,其原因可能是由于岛屿种群的遗传变异性水平较低。本文作者检验了鸟类岛屿种群是否具有较低的遗传变异性、性选择强度大的种群是否具有较高的突变输入率(rate of mutational input),在鸟类岛屿种群中是否具有较低的性选择强度(可以根据配偶外父亲身份的频率来估计)。小卫星共有谱带系数(minisatellite band sharing coefficient)可确定无亲源关系个体之间的遗传变异性,对与遗传变异性有关的雄性个体的父亲(paternity)进行了成对比较以检验如下假说:在具有较多遗传变异的种群中,雌性个体更经常地进行配偶外交配。在小卫星谱带系数较低的鸟类种群中,配偶外父亲的频次较高。对岛屿和大陆鸟类进行的第二个比较分析表明:岛屿种群中的配偶外父亲频次较低,遗传变异性也较低,其部分原因在于突变输入(mutational input)减少。上述发现表明:(1)父亲确认程度(parternity)随遗传变异性的数量而增加;(2)在遗传变异性较大的种群中,突变率较高,性选择的程度更激烈;(3)岛屿种群中性选择的强度一般比大陆种群弱。这对于理解遗传变异性的空间变异、理解岛屿种群和其它隔离种群的保护问题有重要启示。  相似文献   

6.
Islands provide refuges for populations of many species where they find safety from predators, but the introduction of predators frequently results in elimination or dramatic reductions in island‐dwelling organisms. When predators are removed, re‐colonization for some species occurs naturally, and inter‐island phylogeographic relationships and current movement patterns can illuminate processes of colonization. We studied a case of re‐colonization of common eiders Somateria mollissima following removal of introduced arctic foxes Vulpes lagopus in the Aleutian Archipelago, Alaska. We expected common eiders to resume nesting on islands cleared of foxes and to re‐colonize from nearby islets, islands, and island groups. We thus expected common eiders to show limited genetic structure indicative of extensive mixing among island populations. Satellite telemetry was used to record current movement patterns of female common eiders from six islands across three island groups. We collected genetic data from these and other nesting common eiders at 14 microsatellite loci and the mitochondrial DNA control region to examine population genetic structure, historical fluctuations in population demography, and gene flow. Our results suggest recent interchange among islands. Analysis of microsatellite data supports satellite telemetry data of increased dispersal of common eiders to nearby areas and little between island groups. Although evidence from mtDNA is suggestive of female dispersal among island groups, gene flow is insufficient to account for recolonization and rapid population growth. Instead, near‐by remnant populations of common eiders contributed substantially to population expansion, without which re‐colonization would have likely occurred at a much lower rate. Genetic and morphometric data of common eiders within one island group two and three decades after re‐colonization suggests reduced movement of eiders among islands and little movement between island groups after populations were re‐established. We predict that re‐colonization of an island group where all common eiders are extirpated could take decades.  相似文献   

7.
This study evaluated DNA fingerprinting as a tool for estimating population genetic diversity and differentiation by comparing minisatellite variation in island and mainland populations of silvereyes (Aves: Zosterops lateralis). Three populations with different recent histories were compared: (1) Heron Island and neighboring islands, colonized 3000 to 4000 yr ago; (2) Lady Elliot Island, colonized within the past two decades; and (3) an adjacent mainland population, which presumably has existed for thousands of years. The degree of genetic variability within the three populations reflected both their size and the time since their colonization. Minisatellite diversity was highest in the mainland population, intermediate in the Capricorn Island group (which was shown to represent a single admixture), and lowest in the Lady Elliot Island population, possibly because of a recent population bottleneck during colonization. Mean band sharing between any two populations was less than the mean within either of those populations, and four fingerprint bands common to island birds were rare or absent in the fingerprints of mainland birds. In the absence of significant gene flow between the mainland and the islands, the populations have apparently become distinct at minisatellite loci, as evidenced by differences in both allelic diversity and in the frequencies of specific fragments. Within the Heron Island population, cohort analyses demonstrated the temporal stability of the fingerprint profile over 6 yr. This study demonstrates that length polymorphisms at minisatellite loci may be stable enough over time to retain information about recent historical and demographic effects on the relative genetic variability and differentiation of small, closely related populations.  相似文献   

8.
Island/mainland body size differences in Australian varanid lizards   总被引:5,自引:0,他引:5  
Island varanids seem to be an exception to the rule that territorial vertebrate taxa often become gigantic relative to mainland relatives when on islands, whereas non-territorial species become dwarfed (Case 1978). However, no systematic island/mainland studies have examined the empirical size trends in this group of carnivorous lizards. We perform such an analysis for the Australian region and critically evaluate various selective agents that might be responsible for size changes in several island populations. Insular gigantism occurs at least four times among the island populations examined. The magnitude of size change is positively correlated to prey abundance on the islands (as indirectly measured through a condition index of the lizards, essentially a measure of how fat they arc) and the size of prey: islands with large prey have large varanids and vice versa. Since the island population with the largest size change, the Reevesby Varanus rosenbergi, was introduced less than 100 years ago, these size changes can be quite rapid. This might indicate that selective coefficients are strong; however, we can not exclude the possibility that these size differences have no genetic component and simply reflect environmental differences in growth rate and shifts in age structure between island and mainland locations.  相似文献   

9.
We investigated the genetic structure of Sorex unguiculatus and Sorex caecutiens populations in Hokkaido, Japan, using hypervariable microsatellite DNA markers. We used five microsatellite loci to type 475 S. unguiculatus individuals from 20 localities on the Hokkaido mainland and four localities from each of four offshore islands (and 11 shrews from one locality in southern Sakhalin for a particular analysis). We used six microsatellite loci to type 240 S. caecutiens individuals from 13 localities on the Hokkaido mainland. Genetic variation was high in mainland populations of both species and low in the island populations of S. unguiculatus. Allelic richness and island size were positively correlated for S. unguiculatus, suggesting that genetic drift occurred on those islands due to small population size. In addition, four insular populations of S. unguiculatus were genetically differentiated from the mainland populations, although clear phylogeographic clustering was not confirmed among populations on the Hokkaido mainland for either S. unguiculatus or S. caecutiens. Heterozygosity excess was observed in more than half of the populations including the mainland populations of the two species, suggesting recent bottleneck events in these populations. Population dynamics of the shrews might be explained by a metapopulation scheme. According to autocorrelation analysis, the extent of non-random spatial genetic structure was approximately 100 km. Isolation by distance was observed in S. unguiculatus, but not in S. caecutiens although there is a positive trend. The lack of correlation for S. caecutiens might have been due to small sample size. Thus, no obvious differences in population genetic structure were found between the two species on the Hokkaido mainland in the present study, while previous investigations using mitochondrial DNA sequences inferred that these two species might have rather different biogeographic histories.  相似文献   

10.
Morphological and genetic variation is evaluated among populations of the bat, Eidolon helvum , in the islands of the Gulf of Guinea (Central Africa). The populations from the islands of Bioko, Principe, and Sao Tome do not show significant phenetic differentiation, although a trend towards a reduction of size is found in the latter two islands. The low genetic distances between populations, as well as their values of Wright's fixation indexes, suggest that gene flow has hampered differentiation on these islands. In contrast, the population from Annobon, the smallest and farthermost island, shows remarkable morphological and genetic differentiation. On the mainland, E. helvum displays unique migratory and dispersal behaviours, but migratory behaviour was not found in any of the island populations. The combination of selective forces in harsher oceanic environments and restricted gene flow among populations appears to have favoured the high degree of morphological differentiation of E. helvum on Annobon. Due to the extended length of the dry season in Annobon, an earlier achievement of sexual maturity–and consequently smaller size—may be advantageous in the absence of migration. The differentiation is more marked among females, which also suggests that selection may be linked to the reproductive pattern. The population of the island of Annobon is herein described as a new subspecies, Eidolon helvum annobonensis subsp. nov.  相似文献   

11.
Genetic variation was studied in the southern subspecies of the Asian Dolly Varden Salvelinus malma krascheninnikovi from the Kuril Islands. Thirty-six genetic loci controlling 19 enzyme systems were analyzed in 13 Dolly Varden populations from the Shumshu, Paramushir, Onekotan, Rasshua, Simushir, Urup, Iturup, and Kunashir islands. In the studied populations, the proportion of polymorphic loci was 35 to 85% and the mean heterozygosity was 0.104 to 0.173; populations from the Kunashir Island were characterized by maximum heterozygosity. In the island populations examined, significant inter-population heterogeneity of allele frequencies was found for all studied population pairs. For the total population of all islands, the inter-population diversity (GST = 0.188) was comparable to this parameter for the total population from the Kunashir Island (GST = 0.170). Genetic distances between populations did not correlate with the corresponding geographical distances, which indicates the lack of a pronounced gene exchange between the island populations. Cluster analysis and multidimensional scaling based on genetic distances did not reveal clear groups among the studied populations but indicated greater similarity within the Iturup-Simushir-Urup-Paramushir group and a greater genetic divergence of the Kunashir, Onekotan, Rasshua, and especially Shumshu populations. In the Shumshu population, allele frequencies indicate the admixture of genes of the northern Dolly Varden. The observed pattern of genetic differentiation was probably caused largely by genetic drift under the conditions of a limited gene flow because of homing (which is typical of the Dolly Varden) and the presence of isolated nonanadromous populations. The population-genetic analysis of the Dolly Varden from the Kuril Islands does not give grounds to distinguish any other isolated Dolly Varden species in this region than S. malma, which is represented by the southern form S. m. krascheninnikovi with an admixture of the northern form S. m. malma in the Shumshu Island.  相似文献   

12.
Phylogeography of island canary (Serinus canaria) populations   总被引:2,自引:2,他引:0  
Island canaries (Serinus canaria) are characterised as a species living exclusively on North Atlantic islands, mainly on the Azores, Madeira and Canary Islands. Although they are very common in their habitats, their behaviour and breeding system has only recently been studied systematically. To advance the understanding of their ecology and to see if the rather isolated archipelagos are already promoting a genetic differentiation, we investigated their phylogeographic relationship as revealed by mtDNA sequences of the cytochrome b gene and investigated whether this measure corresponds to morphological characteristics within the islands. Genetic distances were very low throughout the distribution range of the species. Although the variation of genetic distances within the population of Pico (Azores) was larger than that on Madeira and Canary Islands, the genetic distances between island populations were very low throughout which prevented a clear phylogeographic differentiation. Moreover, morphological measurements did not reveal a consistent pattern to reliably separate the populations, although the measures of beak length and body weight revealed a clear island-specific differentiation. These data lead to the assumption that the colonisation of the Atlantic islands by the canaries occurred very recently, while there is no persisting gene flow between the populations.  相似文献   

13.
The northern pike Esox lucius L. is a freshwater fish exhibiting pronounced population subdivision and low genetic variability. However, there is limited knowledge on phylogeographical patterns within the species, and it is not known whether the low genetic variability reflects primarily current low effective population sizes or historical bottlenecks. We analysed six microsatellite loci in ten populations from Europe and North America. Genetic variation was low, with the average number of alleles within populations ranging from 2.3 to 4.0 per locus. Genetic differentiation among populations was high (overall θST = 0.51; overall ρST = 0.50). Multidimensional scaling analysis of genetic distances between populations and spatial analysis of molecular variance suggested a single phylogeographical race within the sampled populations from northern Europe, whereas North American and southern European populations were highly distinct. A population from Ireland was monomorphic at all loci, presumably reflecting founder events associated with introduction of the species to the island in the sixteenth century. Bayesian analysis of demographic parameters showed differences in θ (a product of effective population size and mutation rate) among populations from large and small water bodies, but the relative differences in θ were smaller than expected, which could reflect population subdivision within the larger water bodies. Finally, the analyses showed drastic population declines on a time scale of several thousand years within European populations, which we ascribe to either glacial bottlenecks or postglacial founder events.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 91–101.  相似文献   

14.
Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.  相似文献   

15.
The study of mobile animals such as flying foxes in insular habitats involves clarifying the population status on each island and determining the factors affecting movement patterns among the islands in their distributional range. We visited 25 of the Okinawa Islands and documented the number of Orii’s flying foxes Pteropus dasymallus inopinatus from August 2005 to May 2006. We also conducted a monthly road census on the main island (Okinawa-jima Island) and six adjacent islands from June 2006 to January 2007 and counted the number of fruit-bearing trees of the bats’ four main food plants. The results of classification and regression tree analysis suggested that distance from the main island was a primary factor in determining the distribution pattern and population size of this flying fox, whereas island area, number of plant species, and food availability did not directly affect population size. The number of flying foxes on each island tended to decrease with an increase in distance from the main island; no flying foxes existed on islands >30 km away from the main island. On the other hand, the results of the monthly census showed that the population size on each island fluctuated seasonally. Individuals may move between islands in response to seasonal changes in food availability. In conclusion, the distribution and abundance of Orii’s flying foxes in the Okinawa Islands may be determined by the rate of immigration/emigration, depending on each island’s distance from the main island. Seasonal changes in food availability may act as a trigger for interisland movement, but that movement may be restricted by island connectivity.  相似文献   

16.
Additive genetic variance maintained by mutation in a selectively neutral quantitative character is analyzed for an ideal population distributed on n islands, each with local effective size N, that exchange migrants at a small rate, m. In a stable population structure, the expected genetic variance maintained within islands is identical to that in a panmictic population of the same total size, regardless of the migration rate (m > 0). This result contrasts with Wright's classical conclusion, based on inbreeding coefficients, that at least one immigrant per island every other generation (Nm > ½) is necessary for the genetic variance within local populations to approach that under panmixia. The expected genetic variance maintained among islands is inversely proportional to m and increases with the number of islands, but is independent of N. Local extinction and colonization diminish the genetic variance maintained within islands by reducing the effective size of island populations through the founder effect, although the expected genetic variance within islands is nearly as large as that in a panmictic population of the same total effective size. If the founders of new colonies originate from more than one island, rates of local extinction and colonization larger than about twice the migration rate will substantially reduce the genetic variance maintained among islands. These results indicate the importance of mutation and migration in maintaining quantitative genetic variance within small local populations.  相似文献   

17.
To assess the population genetic structure of the three-spined stickleback, Gasterosteus aculeatus, variability at 18 microsatellite loci was examined in 1724 individuals from 74 locations covering most of the species distribution range in Europe. The results revealed high overall degree of differentiation (F(ST) = 0.21) but contrasting level of divergence and genetic variability between habitat types. Marine populations were genetically relatively uniform even across great geographical distances as compared to substantial differentiation among freshwater populations. Analysis of molecular variance indicated low but significant (2.7%) variation in allele frequencies between geographical regions, but a negligible effect of habitat type (0.2%). The phylogenetic pattern was not explained by habitat type, but a weak signal of populations clustering according to geographical or water system origin was found. The results support the view that three-spined stickleback marine ancestors colonized northern European fresh waters during the postglacial marine submergence c. 10,000 years ago, whereas in the Mediterranean region colonization probably dates back to the Pleistocene. The independent origins of river and lake populations indicate that they originate from multiple colonizations rather than sharing common ancestry. In the continuous marine environment, the low degree of differentiation among populations can be explained by gene flow among subpopulations and large effective population size buffering divergence in neutral markers. In contrast, among postglacially established freshwater populations differentiation appears to be driven by genetic drift and isolation. The stepwise mutations appear to have contributed to the population differentiation in the southern part of the three-spined stickleback distribution range.  相似文献   

18.
Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California’s Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200–7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.  相似文献   

19.
Small and isolated island populations provide ideal systems to study the effects of limited population size, genetic drift and gene flow on genetic diversity. We assessed genetic diversity within and differentiation among 19 mockingbird populations on 15 Galápagos islands, covering all four endemic species, using 16 microsatellite loci. We tested for signs of drift and gene flow, and used historic specimens to assess genetic change over the last century and to estimate effective population sizes. Within-population genetic diversity and effective population sizes varied substantially among island populations and correlated strongly with island size, suggesting that island size serves as a good predictor for effective population size. Genetic differentiation among populations was pronounced and increased with geographical distance. A century of genetic drift did not change genetic diversity on an archipelago-wide scale, but genetic drift led to loss of genetic diversity in small populations, especially in one of the two remaining populations of the endangered Floreana mockingbird. Unlike in other Galápagos bird species such as the Darwin''s finches, gene flow among mockingbird populations was low. The clear pattern of genetically distinct populations reflects the effects of genetic drift and suggests that Galápagos mockingbirds are evolving in relative isolation.  相似文献   

20.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号