首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastropod shells from Lake Tanganyika, with their heavy calcification, coarse noded ribbing, spines, apertural lip thickening and repair scars, resemble marine shells more closely than they resemble other lacustrine shells. This convergence between Tanganyikan and marine gastropod shells, however, is not just superficial. Scanning electron microscope (SEM) studies reveal that the Tanganyikan shells are primarily layers of crossed-lamellar crystal architecture (that is, needle-like aragonite crystals arranged into laths that are packed into sheets such that the aragonite needles of adjacent laths are never parallel). The number of crossed-lamellar layers can vary from one to four between different Tanganyikan gastropod species. In species with two or more crossed-lamellar layers, the orientation of the lamellae is offset by approximately 90° between the different layers. The number of crossed-lamellar layers in the shell wall is positively correlated with shell strength and with predation resistance. Three and four crossed-lamellar layers in the shell wall evolved several times independently within the endemic thiarid gastropod radiation in Lake Tanganyika. Repeated origins of three and four crossed-lamellar layers suggest that they may be specific adaptations by Tanganyikan gastropods to strengthen their shells as a defense against shell-crushing predators.  相似文献   

2.
Crab shell-crushing predation and gastropod architectural defense   总被引:5,自引:0,他引:5  
The shell-breaking behavior of the crabs Ozius verreauxii Saussure 1853 and Eriphia squamata, Stimpson 1859 from the Bay of Panama is described. The master claws of both these crabs are well designed for breaking shells. Small shells, relative to the size of a crab predator, are crushed by progressively breaking off larger segments of a shell's apex, while larger shells are peeled by inserting a large dactyl molar into the aperture of a shell and progressively chipping away the lip of the shell.

Heavy gastropod shells are shown to be less vulnerable to crab predators than lighter shells, and narrow shell apertures and axial shell sculpture are demonstrated to be architectural features that deter crab predation. The incidence of architectural features which deter crab predation appears to be higher for smaller gastropod species than for larger gastropods which are too large for most crab predators. Large fish predators prey upon both gastropods and shell-crushing crabs. To avoid fish predators, both these prey groups seek refuge under rocks when covered by the tide. Fish predation thus appears to enforce a close sympatry between smaller gastropods and their crab predators.  相似文献   


3.
1.?Studies examining the integration of constitutive and inducible aspects of multivariate defensive phenotypes are rare. 2.?I asked whether marine snails (Nucella lamellosa) from habitats with and without abundant predatory crabs differed in constitutive and inducible aspects of defensive shell morphology. 3.?I examined multivariate shell shape development of snails from each habitat in the presence and absence of waterborne cues from feeding crabs (Cancer productus). I also examined the influence of constitutive and inducible shell morphology on resistance to crushing. 4.?Regardless of the presence of crabs, snails from high-risk (HR) habitats developed rotund, short-spired shells, while snails from low-risk habitats developed elongate shells, tall-spired shells, indicating among-habitat divergence in constitutive shell shape. Moreover, allometry analyses indicated that constitutive developmental patterns underlying this variation also differed between habitats. However, snails from HR habitats showed greater plasticity for apertural lip thickness and apertural area in the presence of crab cues, indicating among-habitat variation in defence inducibility. 5.?Both shell shape and apertural lip thickness contributed to shell strength suggesting that constitutive shell shape development and inducible lip thickening have evolved jointly to form an effective defence in habitats where predation risk is high.  相似文献   

4.
Predator-induced defenses are among the most ecologically important forms of phenotypic plasticity. Although predation and induced defenses are well documented in rocky-intertidal systems, they have received less attention in soft-bottom communities. Shell-crushing predators are common in soft-bottom, vegetated habitats, which often exhibit substantial spatial heterogeneity in predation intensity. We examined variations in shell morphology of the salt-marsh periwinkle, Littoraria irrorata, among marsh microhabitats in the northern Gulf of Mexico that vary in their accessibility to predatory blue crabs, Callinectes sapidus. Littoraria from high-predation sites exhibited more extensively calcified apertural lips and narrower apertural openings relative to snails from low-predation sites. Thick apertural lips generally increased the handling time required by Callinectes to breach Littoraria shells in laboratory experiments, although the method of shell entry used by crabs was dependent on the crab:snail size ratio. Apertural-lip thickness was not related to past predation events in field-collected snails. Snails exposed to water treated with the effluent of Callinectes and crushed conspecifics produced significantly thicker apertural lips than controls, with a response time and morphological extent comparable to that of their rocky-shore counterparts. This study underscores the widespread occurrence of predator-induced plasticity in marine gastropods and emphasizes its role in soft-bottom, vegetated marine habitats, where shell-crushing predation can be as prevalent a selective force as in the rocky intertidal.  相似文献   

5.
Providing another spectacular model for understanding speciation and radiation, the origin of the gastropod species flock in Lake Tanganyika (with an estimated age of approximately 12 Myr) remained enigmatic to date. Although, for a long time, an in situ radiation was assumed, Lake Tanganyika could have functioned as a reservoir for ancient African lineages, implying that the now lacustrine taxa originiated elsewhere. However, the fluviatile gastropod fauna of adjacent river systems in Central and East Africa is only poorly known. Here, we provide conchological, anatomical, phylogenetical, and biogeographical data on the fluviatile genus Potadomoides Leloup, 1953, which was hitherto regarded as ancestral to the entire Tanganyika gastropod radiation. The type species Potadomoides pelseneeri is restricted to the delta region of the Malagarasi River east of Lake Tanganyika, whereas three congeneric species (Potadomoides bequaerti, Potadomoides hirta, and Potadomoides schoutedeni) inhabit the Congo River with its tributaries Lualaba and Luvua, west of the Tanganyikan Rift. We describe and document, with scanning electron microscopy, the ontogenetic development of embryos of this uterine brooder as well as the detailed reproductive anatomy. Phylogenetic analysis of 44 morphological characters (including adult and embryonic shell, operculum, radula, reproductive tract) for 15 paludomid taxa could not support monophyly of the Tanganyika species flock. Instead, we found two major lineages that colonized Lake Tanganyika independently, one comprising the Nassopsinae Kesteven, 1903 (= Lavigeriinae Thiele, 1925) with the riverine Potadomoides plus the lacustrine Lavigeria and Vinundu, the second comprising the riverine Cleopatra together with the rest of the lacustrine species (except for Tiphobia horei). The analysis identifies Potadomoides as paraphyletic, with the uterine brooder P. pelseneeri being the sister taxon to the uterine brooder Lavigeria plus the oviparous Vinundu, but not to the entire Tanganyika species flock. We reconstruct the independent evolution of an fluviolacustrine taxon Nassopsinae for which we evaluate the synapomorphic characters, in particular those of reproductive biology, and discuss systematic and evolutionary implications of repeated origin of (ovo‐)viviparity in these limnic Cerithioidea. Finally, we outline a hypothesis on the evolutionary history of Potadomoides in the context of the gastropod radiation in Lake Tanganyika. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 367–401.  相似文献   

6.
Freshwater crabs play an important role for the diversification of shell morphologies in freshwater gastropods. For example, the radiation of the freshwater crab genus Platythelphusa in Lake Tanganyika is thought to have driven shell diversification of the lake’s snail fauna, promoting the evolution of thalassoid shells. No comparable thalassoid snails are known from Lake Malawi. Accordingly, it was hypothesized that the lake’s only freshwater crab, Potamonautes lirrangensis, is not a snail predator. We tested this hypothesis using feeding experiments with specimens caught in the southern part of Lake Malawi. Individual crabs were held in experimental containers offshore and were presented with various food items overnight, after which ingestion frequency was recorded. Potamonautes lirrangensis can be characterized as a scavenger that is opportunistically carnivorous. A preference for fish and snail flesh could be observed, indicating a bias toward carnivory. We observed occasional cracking of the shell in different snail species, with frequent ingestion of artificially crushed specimens, suggesting that crabs do attempt to feed on snails. However, the investigated Lake Malawi gastropods appear to be partly protected against crab predation through thick-walled and low-spired shells (especially Lanistes and Bellamya), obviating the evolution of thalassoid shells carrying rims, ridges, or spines.  相似文献   

7.
8.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

9.
Gastropod shells are vital for the majority of hermit crab species, being essential for their survival, growth, protection, and reproduction. Given their importance, shells are acquired and transferred between crabs through several modalities. We conducted observations and experiments at the Asinara Island (Sardinia, Italy) to investigate the efficacy of the different behavioral tactics adopted by the hermit crab Clibanarius erythropus to acquire shells, such as: (1) locomotion and activity at different tidal phases; (2) attendance at shell-supplying sites (simulated predation sites with five different odors: live and dead gastropods, live and dead crabs, predator); and (3) interactions with conspecifics in aggregations on simulated gastropod predation sites. In each tidal phase, locomotion was slow (0.7 cm min− 1) and, as a consequence, the probability of encountering empty shells and conspecifics was low. Simulated gastropod predation sites quickly attracted a larger number of hermit crabs than the other sites tested. Aggregations seemed to function as shell exchange markets, as previously suggested for other species: the first attendant took the experimental shell and a chain of shell exchanges among conspecifics followed. Our results show that, in C. erythropus, aggregation is the most efficient tactic for the acquisition of new shells, whereas in other species, such as Pagurus longicarpus, it is associated with exploitation ability due to the intense locomotion. The interspecific plasticity in hermit crabs' behavior is confirmed.  相似文献   

10.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

11.
Only one study has shown that a hydroid-colonized gastropod shell was a deterrent to predation on hermit crabs. In the present study, the hydroid-colonized shell protected the hermit crab Paguruspollicaris Say from the shell-crushing stone crab Menippe mercenaria (Say) and the non-shell-crushing octopus Octopus joubini Robson. The shell-crushing calico crab Hepatus epheliticus (Johansson) was not deterred, however, by a hydroid-colonized shell.  相似文献   

12.
Lake Tanganyika harbors the oldest, morphologically and behaviorally most diverse flock of cichlid species. While the cichlids in Lakes Malawi and Victoria breed their eggs exclusively by buccal incubation (termed "mouthbrooding"), the Tanganyikan cichlid fauna comprise mouthbrooding and substrate-spawning lineages (fish spawn on rocks, and never orally incubate eggs or wrigglers). The substrate-spawning tribe Lamprologini appears to occupy a key position that might allow one to elucidate the origin of the Tanganyika flock, because five riverine (therefore nonendemic) species from the Zaire River system have been assigned to this tribe, in addition to the lake's endemic species, which make up almost 50% of all 171 species known from this lake (Poll 1986). From 16 species (18 individuals) of the tribe Lamprologini, a 402-bp segment of the mitochondrial cytochrome b gene was sequenced, and, from 25 lamprologine species (35 individuals), sequences from the mitochondrial control region were obtained. To place the Lamprologini into a larger phylogenetic framework, orthologous sequences were obtained from eight nonlamprologine Tanganyikan cichlid species (13 individuals). The Lamprologini are monophyletic, and a clade of six Tanganyikan lineages of mouthbrooders, representing five tribes (Poll 1986), appears to be their sister group. Comparisons of sequence divergences of the control region indicate that the Lamprologini may be older than the endemic Tanganyikan tribe Ectodini, and short basal branches might suggest a rapid formation of lineages at an early stage of the Tanganyika radiation. It is interesting that three analyzed riverine members of the tribe form a monophyletic group; however, they are not the most ancestral branch of the Lamprologini. This might indicate that they are derived from an endemic lamprologine ancestor that left Lake Tanganyika by entering the Zaire River system. These riverine species may not have seeded the Tanganyikan radiation, as currently thought, but may have recently recolonized the river after a long period of isolation, as soon as the lake was connected to the Zaire River again about 2 Mya. Neolamprologus moorii, endemic to Lake Tanganyika, appears to represent the most basal clade of the Lamprologini. Complex breeding behavior, involving the usage of gastropod shells and associated with dwarfism, is likely to have evolved in parallel in several lineages among the Lamprologini. The tribe Lamprologini may be in need of revision, since several genera appear to be polyphyletic.   相似文献   

13.
The sibling marine snails Littorina obtusata (L.) and Littorina mariae Sacchi & Rastelli are sympatrically distributed and the shells of both species are subject to similar breaking forces by predatory crabs. Nevertheless, the two species exhibit rather different growth and defence strategies. To determine growth patterns, we measured changes in five morphological variables with increasing shell length: body whorl thickness at the point of crushing force application, shell height (related to globosity), shell mass, body mass, and apertural lip thickness. We also measured ontogenetic changes in the ability to withstand shell crushing. For most morphological variables, L. mariae showed uniformly allometric growth of juveniles into adults. In contrast, L. obtusata usually exhibited a distinct change in growth pattern upon reaching maturity. As adults, L. mariae showed a more sustained increase in overall shell mass and in body whorl thickness (defence against crushing attacks) and also had proportionally thicker apertural lips (defence against peeling attacks). Littorina obtusata , however, grew to a larger size and their shells could accommodate larger bodies at all sizes. Furthermore, the strength of L. obtusata shells increased faster than could be accounted for by either overall shell mass or thickness at the point of force application, suggesting strengthening by other means such as changes in shell microstructure or shape (other than globosity). These results illustrate the viability of two contrasting antipredator strategies, despite a highly similar phylogenetic history and selective regime.  相似文献   

14.
The survival and reproductive success of hermit crabs is intrinsically linked to the quality of their domicile shells. Because damaged or eroded shells can result in greater predation, evaluating shell structure may aid our understanding of population dynamics. We assessed the structural attributes of Cerithium atratum shells through assessments of (a) density using a novel approach involving computed tomography and (b) tolerance to compressive force. Our goal was to investigate factors that may influence decision making in hermit crabs, specifically those that balance the degree of protection afforded by a shell (i.e. density and strength) with the energetic costs of carrying such resources. We compared the density and relative strength (i.e. using compression tests) of shells inhabited by live gastropods, hermit crabs (Pagurus criniticornis) and those found empty in the environment. Results failed to show any relationship between density and shell size, but there was a notable effect of shell density among treatment groups (gastropod/empty/hermit crab). There was also a predictable effect of shell size on maximum compressive force, which was consistent among occupants. Our results suggest that hermit crabs integrate multiple sources of information, selecting homes that while less dense (i.e. reducing the energy costs of carrying these resources), still offer sufficient resistance to compressive forces (e.g. such as those inflicted by shell-breaking predators). Lastly, we show that shell size generally reflects shell strength, thus explaining the motivation of hermit crabs to search for and indeed fight over the larger homes.  相似文献   

15.
Predatory traces, in which the tracemaker has damaged the prey animal's skeleton to kill and consume it, have a deep fossil history and have received much scientific attention. Several types of predatory traces have been assigned to ichnotaxa, but one of the most studied predatory traces, the wedge-shaped excision produced as a result of attacks mainly by crustaceans on the apertures of gastropod shells, has yet to be described as an ichnotaxon. We propose the ichnogenus Caedichnus to describe the shell damage produced by aperture peeling behavior. Caedichnus is produced by predators that are unable to crush their prey's shells outright. Depending on the predator's peeling ability and the prey's withdrawal depth within the shell, the trace can extend through several whorls of the shell. Aperture peel attacks may fail, allowing such damage to be repaired by surviving gastropods. Thus, the types of attacks that produce Caedichnus may exert selective pressure on prey to evolve better-defended shells (in the case of gastropods) or to inhabit better-defended shells (in the case of hermit crabs). The identification of these trace fossils will enhance our understanding of how predation influences the morphological, and even behavioral, evolution of prey organisms.  相似文献   

16.
Lake Tanganyika, the oldest of the East African Great Lakes, harbors the ecologically, morphologically, and behaviorally most complex of all assemblages of cichlid fishes, consisting of about 200 described species. The evolutionary old age of the cichlid assemblage, its extreme degree of morphological differentiation, the lack of species with intermediate morphologies, and the rapidity of lineage formation have made evolutionary reconstruction difficult. The number and origin of seeding lineages, particularly the possible contribution of riverine haplochromine cichlids to endemic lacustrine lineages, remains unclear. Our phylogenetic analyses, based on mitochondrial DNA sequences of three gene segments of 49 species (25% of all described species, up to 2,400 bp each), yield robust phylogenies that provide new insights into the Lake Tanganyika adaptive radiation as well as into the origin of the Central- and East-African haplochromine faunas. Our data suggest that eight ancient African lineages may have seeded the Tanganyikan cichlid radiation. One of these seeding lineages, probably comprising substrate spawning Lamprologus-like species, diversified into six lineages that evolved mouthbrooding during the initial stage of the radiation. All analyzed haplochromines from surrounding rivers and lakes seem to have evolved within the radiating Tanganyikan lineages. Thus, our findings contradict the current hypothesis that ancestral riverine haplochromines colonized Lake Tanganyika to give rise to at least part of its spectacular endemic cichlid species assemblage. Instead, the early phases of the Tanganyikan radiation affected Central and East African rivers and lakes. The haplochromines may have evolved in the Tanganyikan basin before the lake became a hydrologically and ecologically closed system and then secondarily colonized surrounding rivers. Apparently, therefore, the current diversity of Central and East African haplochromines represents a relatively young and polyphyletic fauna that evolved from or in parallel to lineages now endemic to Lake Tanganyika.  相似文献   

17.
The radiation of gastropods in Lake Tanganyika is an ideal system for testing competing hypotheses of species flock formation. Yet, much of the basic biology of these species remains unknown. In an ongoing effort to understand the evolution of Tanganyikan gastropods, we here describe Stanleya neritinoides. Alcohol‐preserved material of the soft parts is rare, consequently, the systematic position of the species, and a repeated suggested affinity to Tanganyicia rufofilosa, have been based primarily on features of the shell. However, features of the radula and operculum are unique and do not suggest an affinity to any other Tanganyikan species. Thus, S. neritinoides has remained a particularly poorly known and enigmatic member of the species flock. This investigation confirmed that several aspects of internal and external anatomy are shared between S. neritinoides, T. rufofilosa, and other Tanganyikan gastropods, but that S. neritinoides is unique in features of the radula and seminal receptacle. Moreover, S. neritinoides differs from T. rufofilosa in features of the foregut, midgut, hindgut, kidney, nervous system, reproductive system and reproductive strategy. These new data are inconsistent with an interpretation of identity of Stanleya and Tanganyicia. In addition, given the pervasive differences between the two, a sister‐group relationship between the two is unlikely. More precise systematic placement of S. neritinoides awaits the establishment of a phylogenetic framework for all Tanganyikan gastropods.  相似文献   

18.
Shell preference patterns of two common hermit crabs from hard bottom reef flats on the Caribbean coast of Panama are examined in relation to the predation pressures and physical stresses of their habitat. Clibanarius antillensis Stimpson lives in the high intertidal habitat and minimizes exposure to predators by seeking refuge during high tides. It prefers high-spired shells which maximize protection from thermal stress. Calcinus tibicen Herbst avoids tidal emersion and prefers low-spired shells which enhance resistance to the predators common on Caribbean reef flats.The results are compared with similar results from the tropical eastern Pacific Bay of Panama. Shell-crushing predation on Caribbean hermit crabs is suggested to differ quantitatively and qualitatively from predation on hermit crabs in the Bay of Panama. Predation on hermit crabs in the Bay of Panama is more intense and effects larger individuals than predation on Caribbean reef flat hermit crabs. In addition, shell-crushing predation on hermit crabs in the Bay of Panama is primarily from teleost fish predators (Diodon spp.), while predation on Caribbean hermit crabs is primarily by bottom-dwelling crustaceans.Differences in predation pressures and tidal regimes between the Caribbean and Pacific coasts of Panama are reflected in the shell preferences and behavior of hermit crabs from the two areas.  相似文献   

19.
Empty gastropod shells are an important resource for many animals in shallow benthic marine communities. Shells provide shelter for hermit crabs, octopuses, and fishes, provide attachment substratum for hermit crab symbionts, and directly or indirectly modify hermit crab predation. Creation of an empty shell due to predation of one gastropod on another and acquisition of that shell by a hermit crab are two key events in the subsequent use of that shell. Shells of different gastropod species and the species of hermit crab acquiring them affect the symbiont complement that attaches to the shell, which in turn may affect future shell use by other symbionts. Certain shell types worn by the hermit crab, Pagurus pollicaris Say, are positively associated with the symbiotic sea anemone, Calliactis tricolor (Lesueur), which protects the hermit crab from predation by the crab, Calappa flammea (Herbst), and possibly from the octopus, Octopus joubini Robson. Shells of other species of gastropods are resistant to being crushed by the spiny lobster, Panulirusargus (Latreille). The inter-and intraspecific interactions centered on the gastropod shell are termed a “habitat web.” The potential of the shell to limit the size and distribution of animal populations demonstrates how this resource helps shape community structure.  相似文献   

20.
Molluscan predation by the three-spot swimming crab was investigated. The dentition of the heteromorphic chelae allowed crushing, shearing, cutting and holding of prey. Laboratory investigations indicated that small mussels and gastropods were crushed, the larger mussels were prized open, and the foot of the larger gastropods shredded and bits removed. Stomach contents of freshly captured crabs indicated that the crabs are selective carnivores and preferred prey species which are not most abundant in situ (crabs from Kings Beach, Donax serra Röding; crabs from Maitlands River Beach, Bullia rhodostoma Reeve). Ovalipes punctatus (De Haan) foraged on a variety of prey and had no upper prey size limit, but the crabs did show preferences for certain prey sizes. Data indicate that the swimming crabs can effectively utilize the entire mollusc populations on the beaches as prey items.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号