首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
LTB4-induced proinflammatory responses in PMN including chemotaxis, chemokinesis, aggregation and degranulation are thought to be initiated through the binding of LTB4 to membrane receptors. To explore further the nature of this binding, we have established a receptor binding assay to investigate the structural specificity requirements for agonist binding. Human PMN plasma membrane was enriched by homogenization and discontinuous sucrose density gradient purification. [3H]-LTB4 binding to the purified membrane was dependent on the concentration of membrane protein and the time of incubation. At 20°C, binding of [3H]-LTB4 to the membrane receptor was rapid, required 8 to 10 min to reach a steady-state and remained stable for up to 50 min. Equilibrium saturation binding studies showed that [3H]-LTB4 bound to high affinity (dissociation constant, Kd = 1.5 nM), and low capacity (density, Bmax=40 pmol/mg protein) receptor sites. Competition binding studies showed that LTB4, LTB4-epimers, 20-OH-LTB4, 2-nor-LTB4, 6-trans-epi-LTB4 and 6-trans-LTB4, in decreasing order of affinity, bound to the [3H]-LTB4 receptors. The mean binding affinities (K1) of these analogs were 2, 34, 58, 80, 1075 and 1275 nM, respectively. Thus, optimal binding to the receptors requires stereospecific 5(S), 12(R) hydroxyl groups, a cis-double bond at C-6, and a full length eicosanoid backbone. The binding affinity and rank-order potency of these analogs correlated with their intrinsic agonistic activities in inducing PMN chemotaxis. These studies have demonstrated the existence of high affinity, stereoselective and specific receptors for LTB4 in human PMN plasma membrane.  相似文献   

2.
G-protein coupled receptors (GPCRs) belong to the seven transmembrane protein family and mediate the transduction of extracellular signals to intracellular responses. GPCRs control diverse biological functions such as chemotaxis, intracellular calcium release, gene regulation in a ligand dependent manner via heterotrimeric G-proteins1-2. Ligand binding induces a series of conformational changes leading to activation of heterotrimeric G-proteins that modulate levels of second messengers such as cyclic adenosine monophosphate (cAMP), inositol triphosphate (IP3) and diacyl glycerol (DG). Concomitant with activation of the receptor ligand binding also initiates a series of events to attenuate the receptor signaling via desensitization, sequestration and/or internalization. The desensitization process of GPCRs occurs via receptor phosphorylation by G-protein receptor kinases (GRKs) and subsequent binding of β-arrestins3. β-arrestins are cytosolic proteins and translocate to membrane upon GPCR activation, binding to phosphorylated receptors (most cases) there by facilitating receptor internalization 4-6.Leukotriene B4 (LTB4) is a pro-inflammatory lipid molecule derived from arachidonic acid pathway and mediates its actions via GPCRs, LTB4 receptor 1 (BLT1; a high affinity receptor) and LTB4 receptor 2 (BLT2; a low affinity receptor)7-9. The LTB4-BLT1 pathway has been shown to be critical in several inflammatory diseases including, asthma, arthritis and atherosclerosis10-17. The current paper describes the methodologies developed to monitor LTB4-induced leukocyte migration and the interactions of BLT1 with β-arrestin and , receptor translocation in live cells using microscopy imaging techniques18-19.Bone marrow derived dendritic cells from C57BL/6 mice were isolated and cultured as previously described 20-21. These cells were tested in live cell imaging methods to demonstrate LTB4 induced cell migration. The human BLT1 was tagged with red fluorescent protein (BLT1-RFP) at C-terminus and β-arrestin1 tagged with green fluorescent protein (β-arr-GFP) and transfected the both plasmids into Rat Basophilic Leukomia (RBL-2H3) cell lines18-19. The kinetics of interaction between these proteins and localization were monitored using live cell video microscopy. The methodologies in the current paper describe the use of microscopic techniques to investigate the functional responses of G-protein coupled receptors in live cells. The current paper also describes the use of Metamorph software to quantify the fluorescence intensities to determine the kinetics of receptor and cytosolic protein interactions.Download video file.(88M, mov)  相似文献   

3.
A leukotriene B4 (LTB4) analog, 20-trifluoromethyl LTB4 (20CF3−LTB4), has been synthesized and evaluated with human neutrophils for effects on chemotaxis and degranulation. 20CF3−LTB4 was equipotent to LTB4 as a chemoattractant (EC50, 3 nM), produced 50% of maximal activity of LTB4, and competed with [H] LTB4 for binding to intact human neutrophil LTB4 receptors. In contrast to chemotactic activity, 20CF3−LTB4 in nanomolar concentrations exhibited antagonist activity without agonist activity up to 10 μM on LTB4-induced degranulation. The analog had no significant effect on degranulation induced by the chemoattractant peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP). Like LTB4, 20CF3−LTB4 induced neutrophil desensitization to degranulation by LTB4. The results indicate that hydrogen atoms at C-20 of LTB4 are critical for its intrinsic chemotactic and degranulation activities. The fact that 20CF3−LTB4 is a partial agonist for chemotaxis and an antagonist for degranulation syggests that different LTB4 receptor subtypes are coupled to these neutrophil functions. Desensitization of the neutrophil degranulation response to LTB4 can result from receptor occupancy by an antagonist, and therefore, the desensitization is not specific for an agonist.  相似文献   

4.
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip . The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml−1− 10 ug ml−1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

5.
Leukotriene B4 (LTB4) is an inflammatory lipid mediator produced from arachidonic acid by multiple reactions catalyzed by two enzymes 5-lipoxygenase (5-LOX) and LTA4 hydrolase (LTA4H). The two receptors for LTB4 have been identified: a high-affinity receptor, BLT1, and a low-affinity receptor, BLT2. Our group identified 12(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (12-HHT) as a high-affinity BLT2 ligand. Numerous studies have revealed critical roles for LTB4 and its receptors in various systemic diseases. Recently, we also reported the roles of LTB4, BLT1 and BLT2 in the murine ophthalmic disease models of mice including cornea wound, allergic conjunctivitis, and age-related macular degeneration. Moreover, other groups revealed the evidence of the ocular function of LTB4. In the present review, we introduce the roles of LTB4 and its receptors both in ophthalmic diseases and systemic inflammatory diseases. LTB4 and its receptors are putative novel therapeutic targets for systemic and ophthalmic diseases.  相似文献   

6.
7.
We have examined the effects of very pure (> 99.8%) chemically synthesized leukotriene B4 of verifeid structuer on the chemotactc and secretry behavior of human polymphonuclear leukocytes (PMN). The synthetic material is highly chemotactic and shows the same concentration dependence of this activity as does natural LTB4. Synthetic LTB4 is also a weak degranulating agnet in cytochalasin B treated PMN. Maximally it released 11%, 17% and 26% as much N-acetyl-β-D-dlucosaminidise, myeloperoxidase and lysozyme as did N-formyl-methionine-leucine-phneylalanine (fMLP). Thus LTB4 differs significantly from other chemotaxisn, as such as C5a and fMLP, in that it is a poor secretagogue for enzymes of the specific adn azurophilic granules of human PMN.  相似文献   

8.
9.
The interactions have been studied of leukotriene B4 (LTB4) and 20-COOH-LTB4 with human neutrophils (PMN). Kinetic studies, utilizing continuous recording techniques, showed that LTB4 activates PMN with respect to aggregation, mobilization of membrane-associated Ca2+, ?˙ generation, and degranulation within seconds of exposure. Dose-response studies indicate 1) that LTB4 is much more potent than its dicar?ylic acid derivative (20-COOH-LTB4) or its all trans-isomer, and 2) that PMN responses to these agents are largely dependent upon pretreatment of the cells with cytochalasin B. These properties were similar to those of the microbial ionophores, ionomycin and A23187. Results demonstrate that LTB4 rapidly activates PMN and indicate that LTB4 serves as a complete secretagogue. Moreover, they provide additional evidence that oxidized fatty acids activate human PMN.  相似文献   

10.
The metabolism of synthetic leukotriene B4 (LTB4) in synovial fluid from rheumatoid arthritis and osteoarthritis patients and in whole blood from these same patient groups and from normal volunteers has been studied. A linear relationship existed between a plot of the time of incubation of samples with LTB4 and the percentage of the initial concentration of LTB4 at each time point. The slope of this line, the rate constant for metabolism, has been used to compare different samples. LTB4 was metabolised more rapidly in the synovial fluid of rheumatoid arthritis patients than osteoarthritis patients. Furthermore, LTB4 was metabolised more rapidly in the blood of rheumatoid arthritis patients that either osteoarthritis patients or normal volunteers. These differences in metabolism correlate with the polymorphonuclear leukocyte (PMN) and albumin content of samples. It is suggested that binding of LTB4 to albumin will in part determine the available concentration of LTB4 in inflammatory lesions.  相似文献   

11.
[3H] Leukotriene B4 (LTB4) binds concentration dependency to intact human polymorophonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4°C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of [3H] LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 × 10−9M and Bmax of 1.96 × 104 sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 × 10−9M and a Bmax of 45.6 × 104 sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25°C[3H] LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific [3H] LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.  相似文献   

12.
Ginseng, the root of Panax ginseng C.A. Meyer, is used as a general tonic. Recently, we isolated a novel ginsengderived lysophosphatidic acid (LPA) receptor ligand, gintonin. Gintonin activates G protein-coupled LPA receptors with high affinity in cells endogenously expressing LPA receptors, e.g., Xenopus oocytes. P2X receptors are ligandgated ion channels activated by extracellular ATP, and 7 receptor subtypes (P2X1–P2X7) have been identified. Most of the P2X1 receptors are expressed in the smooth muscles of genitourinary organs involved in reproduction. A main characteristic of the P2X1 receptor is rapid desensitization after repeated ATP treatment of cells or tissues expressing P2X1 receptors. In the present study, we examined the effect of gintonin on P2X1 receptor channel activity. P2X1 receptors were heterologously expressed in Xenopus oocytes. ATP treatment of oocytes expressing P2X1 receptors induced large inward currents (I ATP ), but repetitive ATP treatments induced a rapid desensitization of I ATP . Gintonin treatment after P2X1 receptor desensitization potentiated I ATP in a concentration-dependent manner. We further examined the signaling transduction pathways involved in gintonin-mediated potentiation of I ATP . Gintoninmediated I ATP potentiation was blocked by Ki16425, an LPA1/3 receptor antagonist, a PKC inhibitor, a PLC inhibitor, and a PI4-Kinase inhibitor but not by a calcium chelator. In addition, mutations of the phosphoinositide binding site of the P2X1 receptor greatly attenuated the gintonin-mediated I ATP potentiation. These results indicate that G protein-coupled LPA receptor activation by gintonin is coupled to the potentiation of the desensitized P2X1 receptor through a phosphoinositide-dependent pathway.  相似文献   

13.
Airway epithelial cells (AEC) play an active role in the regulation of inflammatory airway disease. In the present study we analyzed the interaction of AEC with polymorphonuclear leukocytes (PMN) in coincubation with respect to their arachidonic acid (AA) metabolism using reversed phase-HPLC and post-HPLC-ELISA. Primary cultures of porcine AEC released predominantly PGE2, PGF2a, and 15-hydroxyeicosatetraenoic acid (15-HETE), whereas the major human PMN-derived AA metabolite was the chemotactic factor leukotriene B4 (LTB4). In AEC-PMN cocultures stimulated with the calcium ionophore A23187, PMN-related 5-lipoxygenase products were decreased by 45%. This reduction in LTB4 formation in the presence of AEC was mainly due to PGE2 generated by the epithelial cells, whereas 15-HETE made a minor contribution. Most of the effect was inhibited by AEC pretreatment with acetylsalicylic acid and restored by addition of equivalent amounts of exogenous PGE2. LTB4 degradation was not enhanced in PMN-AEC coincubations. Moreover, reduction of LTB4 formation in this system did not require an intimate cell-to-cell contact as shown by studies involving filter membranes for PMN-AEC separation. Superoxide anion concentrations were also decreased in PMN-AEC coincubations; this effect, however, was unrelated to PGE2 for quantitative reasons and was probably due to 2 is the major mediator in the coincubation of porcine AEC and human PMN that downregulates neutrophil responses by activating receptors on the neutrophil. A minor contributor in this course of PMN-AEC interaction may be the 15-HETE transcellular pathway. Overall, airway epithelium appears to play an antiinflammatory role by damping the proinflammatory potential of neutrophils. J. Cell. Physiol. 175:268–275, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Abstract: Transfected Chinese hamster ovary cells were used as a model for the study of the desensitization of the neurotensin receptor at the second messenger level. Stimulation with nanomolar concentrations of neurotensin elicited rapid rises in the cytosolic calcium concentration ([Ca2+]i), which remained elevated throughout the peptide application. A significant response was already detected with neurotensin concentrations as low as 0.01 nM. This high efficiency of neurotensin in mediating this calcium response contrasts with the nanomolar affinity of the peptide for its receptor measured in binding experiments. Evidence indicated that the initial elevation of the [Ca2+]i resulted from release of Ca2+ from intracellular stores, whereas the sustained response involved an influx of extracellular origin. Return to the basal level was only reached after extensive washing of the peptide or its displacement with the neurotensin receptor antagonist SR48692. After washing, further stimulations were still able to mediate an increase in the [Ca2+]i, indicating an apparent absence of rapid desensitization of the intracellular signaling pathway that mediates calcium mobilization. In contrast with this absence of response desensitization, the neurotensin receptors were found to internalize after stimulation with the peptide. This internalization was maximal after 30 min and accounted for ~70% of the number of neurotensin binding sites located at the cell surface. These results indicate that despite the functional properties of the rat neurotensin receptor present in Chinese hamster ovary cells after transfection, the intracellular signaling pathway triggered by stimulation with neurotensin seems to be resistant to desensitization. This might be related to the high efficiency of the intracellular signaling pathway coupled to the neurotensin receptor observed in these cells. A possible absence of desensitization of the neurotensin receptor itself is also discussed.  相似文献   

15.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B4(LTB4). 6- -LTB4, 12- -6- -LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohyroxyeicosatetraenoic acids (i.e., 5-HETE) and w-oxidation products (i.e., 20-COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 uM), LTB4 but 5-HETE formation was impaired. (1-14C) Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate. (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

16.
Prostaglandin E1 receptor sites were measured in homogenates of NG108-15 neuroblastoma-glioma hybrid cells after exposure of intact cells to PGE1. Scatchard analysis of competitive binding studies showed that incubation of NG108-15 cells in the presence of 2.5 μM PGE1 for 16 h resulted in a loss of PGE1 receptors and an increase in the dissociation constant of the remaining receptors. Thus, cells challenged with PGE1 not only lose adenylate cyclase activity, but also lose PGE1 receptors and decreased the affinity of the remaining receptors for PGE1.  相似文献   

17.
Five milligrams of [5,6,8,9,11,12,14,15-3H8]-leukotriene B4 (LTB4) (1.68 Ci/mmol) were infused into a monkey over a three hour period. Twenty-five per cent of the infused 3H-activity was recovered in the urine during the twenty hours of collection. Plasma and urinary metabolite volatility studies revealed that in contrast to previously studied eicosanoids, more than 70% per cent of the infused LTB43H-label was converted to tritiated water. The major nonvolatile urinary metabolite of LTB4 representing 0.8% of the infused material was identified as 20-OH-LTB4. LTB4 was not excreted in the urine. Other nonvolatile metabolites of LTB4 representing less than 0.4% each of the infused material were isolated from the urine. While there was an adequate quantity of some of these metabolites for partial characterization, there was insufficient material for structural elucidation. Further studies were performed in rabbits in which either LTB4 or the structurally related compound 8,15-dihydroxyeicosatetraenoic acid (8,15-diHETE) were infused intravenously. In these rabbits the metabolism of LTB4 and 8,15-diHETE was similar to that in the monkey with greater than 80% of the infused 3H-activity converted to tritiated water. These studies suggest that leukotriene B4 and structurally related compounds undergo extensive degradation in vivo via the β-oxidation system.  相似文献   

18.
5-Oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A4 (LTA4) in addition to 5,12-dihydroxy-(6E,8E,10E,14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E,11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA4 was found to be pH-dependent. After incubation of LTA4 in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA4 in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC50 of 250 nM, as compared to values of 3.5 nM for leukotriene B4 (LTB4) and >500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB4 totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB4. The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB4 receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB4 receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z,14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB4.  相似文献   

19.
Several studies indicate that increased intake of eicosapentaenoic acid (EPA) in the diet may lead to decreased incidence of thrombotic events. Most investigators agree that this is achieved by competitively inhibiting the conversion of arachidonic acid (AA) to thromboxane A2 in the platelets. The effect of high EPA-intake on the formation of prostacyclin is less clear. However, EPA is a good substrate for lipoxygenase enzymes which results in formation of hydroperoxy- and hydroxy-acids, and, in some cases, leukotrienes. The biological activities of the leukotrienes derived from arachidonic acid suggest that they mediate or modulate some symptoms associated wth inflammatory and hypersensitivity reactions. In order to clarify the possible effect of dietary manipulation of inflammatory processes, leukotriene B5 (LTB5) was prepared and its biological activities assessed. LTB5 was biosynthesised by incubating EPA with glycogen-elicited polymorphonuclear neutrophils (PMN) from rabbits in the presence of the divalent cation ionophore, A23187. The LTB5 was extracted from the incubate using minireverse phase extraction columns (Sep-pak) and purified by reverse-phase high pressure liquid chromatography (RP-HPLC). The purity of the product assessed by repeat RP-HPLC and straight phase (SP) HPLC was greater than 95%. Ultra-violet spectrophotometry of the product confirmed its purity and also provided assessment of the yield. The biological activity of LTB5 was assessed and compared with that of LTB4 in the following tests: aggregation of rat neutrophils, chemokinesis of human PMN, lysosomal enzyme release from human PMN and potentiation of bradykinin-induced plasma exudation. In all these tests. LTB5 was considerably less active (at least 30 times) than LTB4.  相似文献   

20.
The octapeptide angiotensin II mediates the physiological actions of the renin-angiotensin system through activation of several angiotensin II receptor subtypes; in particular the AT1. In many tissues, the presence of multiple angiotensin II receptor subtypes, together with a low number of receptors, makes it difficult to study biological responses to physiological concentrations (10–11–10–9 M) of angiotensin II. Also, cultured cells show diminished angiotensin II receptor binding with respect to time in culture and passage number. To address these problems, we expressed the recombinant AT1A receptor in CHO-K1 cells. The stably transfected receptor was characterized using radioligand binding studies and functional coupling to cytosolic free calcium. Radioligand binding of [125I] angiotensin II to the angiotensin II receptor was specific, saturable, reversible and modulated by guanine nucleotides. Like the endogenous AT1A receptor, reported in a variety of tissues, the specific, noncompetitive, nonpeptide AII receptor antagonist, EXP3174, blocked binding of [125I] angiotensin II to the transfected receptor. Scatchard analysis demonstrated that the transfected receptor had a dissociation constant of 1.9 nM with a density of 3.4 pmol/mg protein.An important feature of many of the responses to angiotensin II is the rapid desensitization that occurs following agonist occupancy and the development of tachyphylaxis. In AT1A receptor transfected CHO-K1 cells, angiotensin II (10–9 M) stimulated a rapid increase in cytosolic free calcium that was completely desensitized within 50 sec following receptor occupancy. Agonist induced desensitization was unaffected when receptor internalization was blocked by pretreatment with concanavalin A or incubation at 4°C, and no changes in AT1A receptor affinity or number were observed. Receptor desensitization was also unaffected by inhibition or activation of protein kinase C. Thus, we have established a permanent, high-level transfectant of the AT1A receptor in CHO-K1 cells and have shown that these receptors rapidly desensitize following exposure to physiological concentrations of agonist. The mechanism of rapid desensitization is not related to receptor sequestration, internalization or controlled by PKC phosphorylation. This provides an excellent model for studying AII actions mediated through a specific receptor subtype, at subnanomolar concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号