首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Møller AP 《Oecologia》2008,155(4):845-857
Climate change has been shown to affect the timing of reproduction, with earlier reproduction being associated with an increase in temperature. Changes in the timing of reproduction arise from changes in food availability as well as other factors, and differences in the timing of reproduction among sites may cause sites with early reproduction to contribute disproportionately to local recruitment. In this study, spatial variation in the laying date of barn swallows Hirundo rustica at 39 sites in a 45-km2study area during the period 1971–2004 was used to investigate micro-geographic patterns in the timing of breeding. I found that individuals breeding at sites with early reproduction had a disproportionately large reproductive success. Early sites were characterized by early plant phenology, as determined by the date of leafing of the broad-leaved elm Ulmus glabra and date of flowering of the snowdrop Galanthus nivalis during a single year. Such early sites showed greater advancement in laying date between 1971 and 2004 than the average site. Early sites were also generally occupied during more years by a larger number of breeders than were late sites. Breeders at early sites produced more fledglings, and breeders at such sites were characterized by a smaller adult body size and larger secondary sexual characters than individuals at the average site. These observations are consistent with the hypothesis that temporal changes in the timing of reproduction occur as a consequence of differential recruitment at phenologically early sites that produce disproportionately large numbers of offspring. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Pollen-limited plants are confronted with a difficult tradeoff because they must present showy floral displays to attract pollinators and yet must also minimize their apparency to herbivores. In these systems, traits that increase pollinator visitation may also increase herbivore oviposition and overall plant resistance may therefore be constrained to evolve largely as a correlated response to selection on plant apparency or vigor. We used a family-structured quantitative genetic experiment to evaluate the importance of ungulate browsing, flowering date and plant height (traits that are related to overall vigor), and variation in a putative phytochemical defense (cucurbitacin production) on patterns of seed fly attack in a scarlet gilia population. We found significant genetic variation in the amount of insect damage plants experience in the field, providing evidence that resistance may evolve. In addition, we found that browsing reduced seed fly attack and that oviposition is strongly related to plant size and flowering date; large, early flowering plants experience high attack. In addition, we found that high cucurbitacin production was correlated with low seed fly damage, although this effect was relatively weak.We found directional selection on final plant height and flowering date; tall, early flowering plants had the highest reproductive success. In addition, we found negative directional selection on cucurbitacin production, which may indicate a high cost of cucurbitacin or other functions of this phytochemical. Although seed fly herbivory arguably decreases plant fitness, we found an unexpected positive relationship between damage and fitness. A negative relationship between fitness and damage may be masked in this system through strong positive indirect correlations between patterns of damage and levels of pollinator visitation. Finally, we found significant genetic variation in flowering date, plant height, and cucurbitacin production. Resistance to seed flies may evolve in this population, but largely as a non-adaptive correlated response to selection on overall plant vigor. Phytochemicals may play a more important role in defense in years with high seed fly attack, or when pollen-limitation is less severe.Co-ordinating editor: J. Tuomi  相似文献   

3.
We study the evolutionarily stable reproductive timing of annual plants that face unpredictable environmental disturbances. Plants living in a riverbed often experience a disturbance before they reproduce, suffering major fitness loss. Plants reproducing prior to the flood season are free from the risk of lost reproduction, but a small flowering plant can produce only a few numbers of seeds. If the date of disturbance is unpredictable, a mixed strategy of reproductive timing may evolve in which individuals of the same genotype have different reproductive dates. We calculate the evolutionarily stable phenotype distribution analytically. Depending on parameters, the ESS distribution is either (1) a timid strategy-the plant reproduces when small, prior to the major disturbance season; (2) a bold strategy-the plant reproduces only when it is fully grown; (3) a mixture of early and late reproduction; or (4) dates of reproduction spread over a wide interval. We also examine the effects of developmental and environmental noises that make realized flowering dates deviate from that programmed by the genotype, which follows the ESS distribution. In the presence of noise, the ESS distribution of programmed timing of reproduction is discrete.  相似文献   

4.
The timing of when to initiate reproduction is an important transition in any organism's life cycle. There is much variation in flowering time among populations, but we do not know to what degree this variation contributes to local adaptation. Here we use a reciprocal transplant experiment to examine the presence of divergent natural selection for flowering time and local adaptation between two distinct populations of Mimulus guttatus. We plant both parents and hybrids (to tease apart differences in suites of associated parental traits) between these two populations into each of the two native environments and measure floral, vegetative, life-history, and fitness characters to assess which traits are under selection at each site. Analysis of fitness components indicates that each of these plant populations is locally adapted. We obtain striking evidence for divergent natural selection on date of first flower production at these two sites. Early flowering is favored at the montane site, which is inhabited by annual plants and characterized by dry soils in midsummer, whereas intermediate (though later) flowering dates are selectively favored at the temperate coastal site, which is inhabited by perennial plants and is almost continually moist. Divergent selection on flowering time contributes to local adaptation between these two populations of M. guttatus, suggesting that genetic differentiation in the timing of reproduction may also serve as a partial reproductive isolating barrier to gene flow among populations.  相似文献   

5.
Recent theoretical studies have argued that plant-herbivore coevolution proceeds in a diffuse rather than a pairwise manner in multispecies interactions when at least one of two conditions are met: (1) genetic correlations exist between plant resistances to different herbivore species; and (2) ecological interactions between herbivores sharing a host plant cause nonadditive impacts of herbivory on plant fitness. We present results from manipulative field experiments investigating the single and interactive fitness effects of three types of herbivory on scarlet gilia (Ipomopsis aggregata) over two years of study. We utilize these data to test whether selection imposed by herbivore attack on date of first flowering is pairwise (independent) or diffuse (dependent) in nature. Our results reveal complex patterns of the fitness effect of herbivores. Simulated early season browsing had a strong negative fitness effect on plants and also reduced subsequent insect attack. Surprisingly, this ecological interaction did not translate into significant interactions between clipping and insect manipulations on plant fitness. However, we detected a significant interaction between seed fly and caterpillar herbivory on plant fitness, with the negative effect of either insect being greatest when occurring alone. These results suggest that herbivore-imposed selection may have pairwise and diffuse components. In our selection analysis of flowering phenology, we discovered significant pairwise linear selection imposed by clipping, diffuse linear selection imposed by insects, and diffuse nonlinear selection imposed by clipping and insect attack acting simultaneously. Our results reveal that the evolution of flowering phenology in scarlet gilia may be in response to diffuse and pairwise natural selection imposed by multiple herbivores. We discuss the evolution of resistance characters in light of diffuse versus pairwise forms of linear and nonlinear selection and stress the complexity of selection imposed by suites of interacting species.  相似文献   

6.
In alpine environments, flowering phenology can differ within local populations even at the same elevation. We assessed the effects of differences in flowering phenology due to snowmelt timing caused by local geographic heterogeneity on the genetic structure of a population of an alpine plant, Erythronium grandiflorum Pursh. We established a study plot of 250×70 m at 3,340 m above sea level in the Front Range of the Rocky Mountains, CO, USA. The flowering phenology was considerably influenced by snowmelt timing due to local geographic heterogeneity. Twenty-two patches of E. grandiflorum were recognized in the study plot and were classified into three phenological groups: early, middle, and late. To express the differentiation of flowering phenology among the patches, we defined phenological distance and analyzed the relationship between genetic and phenological distances. Additionally, since genetic distance is expected to co-vary with geographic distance, we also analyzed the relationship between genetic distance and geographic distance among patches. The results revealed not only that isolation by distance was present among patches, but also that the differences in snowmelt timing gave rise to phenologically distant patches of E. grandiflorum, which in turn determine the genetic structure caused by the limited pollen flow between patches.  相似文献   

7.
Field studies on two populations of Agalinis strictifolia were conducted over a 3-year period to investigate the relationship between flowering time of individuals and plant size, flowering duration, flower and fruit production, fruit predation, and growth rate. Seasonal patterns of pollinator visitation were compared with those of individual flowering time, flower density, percent fruit production, and mean seeds/fruit. In general, early and middle flowering individuals (as determined by either first flowering date or peak flowering) were larger, flowered longer, and produced more flowers and fruits than late flowering individuals. Early and middle flowering individuals (based on first flowering date) also grew faster than late flowering individuals. Although early and middle flowering individuals produced more fruits, fruit predators did not damage a disproportionate number of fruits compared to late flowering individuals. Patterns of bee visitation showed no association with seasonal patterns of flower density, percent fruit production, mean seed/fruit, or individual flowering time. In populations of A. strictifolia, it would seem that biotic or environmental determinants of growth rate (hence size and reproductive success) may be more important in generating variation in individual flowering time than patterns of pollinator visitation or fruit predation.  相似文献   

8.
Guozhen Du  Wei Qi 《Plant Ecology》2010,206(2):321-333
Flowering timing is of fundamental biological importance for its tight association with pre-flower growth states and subsequent reproduction success. Here, we selected plant height and seed size to represent plant growth and reproduction states, respectively, and analyzed their associations with flowering time in 11 communities together representing a QingHai-Tibetan flora. Trait associations were examined using Pearson correlation analyses (TIPs) and phylogenetically independent contrasts (PICs) within individual communities and meta-analyses across all communities. The results of TIPs-based and PICs-based analyses were generally congruent, although fewer contrasts were significant with PICs, probably because of low statistical power. Overall, flowering time was negatively correlated with seed size and plant height (i.e., plants with larger seeds and stature started flowering earlier) in various woody communities, but correlations were neutral or positive in herbaceous communities. The seed size–flowering time relationship was negative for woody and herbaceous perennials but not for annual herbs in most communities. The relationship between plant height and flowering time was negative for woody but positive for herbaceous plants. Moreover, the lack of difference in time–size relationships between anemophilous and entomophilous plants suggests that pollination type may only be a secondary force in controlling flowering phenology. Our studies demonstrate that environmental conditions, community structure, and plant life history strategies may affect community flowering time singly or in combination.  相似文献   

9.
K. J. Rice 《Oecologia》1987,72(4):589-596
Summary The periodic occurrence of summer/early autumn precipitation in the California annual grassland can result in the formation of early and late emerging cohorts of Erodium botrys and E. brachycarpum. The occurrence of early rainfall and the timing of such rainfall are highly variable from year to year. A series of field watering experiments in 1980–81 were used to simulate early emergence conditions that would result from significant rainfall (1 cm) occurring in mid-July, late August, and mid-September. Net reproduction was used to estimate fitness differentials between Erodium cohorts emerging in response to a watering treatment (early emerging cohorts) and Erodium cohorts emerging with the onset of winter rains in mid-October (late emerging cohorts). Survival was lower and gross reproduction was higher among early emerging cohorts than late emerging cohorts. For both species, net reproduction of the early cohort was lower than that of the late cohort under the July watering treatment and higher than that of the late cohort under the August watering treatment.Early cohorts, formed in response to rainfall in mid-September, 1982, were also compared demographically to later cohorts emerging in October. Compared to late cohorts, net reproduction, gross reproduction and survival were higher for the early cohorts.Common garden experiments indicate that differences in the duration of seed dormancy between the progenies of early and late emerging plants reflect a significant genetic component. Progency produced by early cohorts of E. brachycarpum from all three watering treatments possessed more extended seed dormancy than progeny of late cohorts. In E. botrys, progeny from early cohorts emerging in response to the July watering treatment were also more dormant than late progeny. In contrast, early cohorts of E. botrys emerging in response to the September watering treatment produced seed less dormant than seed produced by late cohorts. When combined with demographic data, indicating that fitness differentials between early and late cohorts varied with changes in the date of early emergence, genetic results suggest that year to year variation in early rainfall may act to retain genetic variation in the duration of seed dormancy.  相似文献   

10.
The optimal timing of the seasonal switch from somatic growth to reproduction can depend on an individual's condition at reproduction, the quality of the environment in which it will reproduce, or both. In annual plants, vegetative size (a function of age at flowering) affects resources available for seed production, whereas exposure to mutualists, antagonists, and abiotic stresses in the environment (functions of Julian date of flowering) influences success in converting resources into offspring. The inherent tight correlation between age, size, and environment obscures their independent fitness contributions. We isolated the fitness effects of these factors by experimentally manipulating the correlation between age at flowering and date of flowering in Brassica rapa. We staggered the planting dates of families with differing ages at flowering to produce experimental populations in which age at flowering and date of flowering were positively, negatively, or uncorrelated. In all populations, plants with an early date of flowering produced more seed than those flowering late, regardless of age or size at flowering onset. The temporal environment was thus the principal driver of selection on flowering time, but its importance relative to that of age and size varied with the presence/absence of herbivores and seed predators.  相似文献   

11.
Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well‐understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011–2013 by altering snow pack (snow‐removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow‐removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost‐damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early‐flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the success of early‐flowering plants not through plant‐pollinator mismatch but through the direct impacts of extreme environmental conditions.  相似文献   

12.
Leaf senescence results in the recycling of nutrients, thereby providing resources required for growth and reproduction. In this study, the effect of day-length on leaf senescence in eight different Arabidopsis thaliana ecotypes was determined and the relationship between senescence and other morphological and life history traits was analysed. A significant variation in the start and extent of leaf senescence depending on the genetic background and the response to day-length was found. Whereas senescence of early flowering ecotypes was accelerated by long days, no effect of day-length on senescence could be found in late flowering Kas-1 plants. Senescence in the different ecotypes was associated with other traits, such as floral transition, the total number of fruits, the total number of leaves and the maximum chlorophyll content. Plants that bolted early also senesced early, produced fewer leaves, accumulated less chlorophyll, but produced more fruits. The present results indicate that senescence may be a key component in the trade-off between investment in photosynthetic capacity and reproduction. The relationship between senescence and other traits was maintained independent of whether differences in senescence were caused by genetic (ecotype) or environmental (day-length) variation, suggesting that genetic and environmental factors affect these traits through common regulatory pathways.  相似文献   

13.
夏婧  郭友好 《生物多样性》2012,20(3):330-336
开花物候是物种间相互作用的重要生活史特征和适合度因子,在全球气候变化的背景下而备受关注.为探讨开花时间如何存种内和种间水平上影响植物的传粉和生殖成功,我们连续3年(2003-2005)对不同花期和伴生种存在情况下的鹤首马先蒿(Pedicularis gruina)的传粉者访花忠实度、受粉率、坐果率、单果种子产量和果实被啃食频率进行了比较研究.结果表明鹤首马先蒿的坐果率主要受其传粉环境的影响:在没有伴生种时,不同时期鹤首马先蒿的坐果率没有显著差异,34-38%的花可以坐果;在有伴生种存在时既可以显著提高其坐果率,也可显著降低其坐果率,这取决于传粉者类型以及伴生种密穗马先蒿(P.densispica)花期的差异.密穗马先蒿具有花蜜和花粉双重报酬,在群落中可以作为主体物种吸引传粉者并间接促进与其伴生的鹤首马先蒿的传粉和生殖成功.同样无蜜的管花马先蒿(P.siphonantha)和鹤首马先蒿伴生,则是通过提高群落水平对传粉者的吸引力进而直接促进鹤首马先蒿的传粉和生殖成功.此外,研究结果也表明开花时间对坐果率没有显著影响,但是显著影响单果种子产量和果实被啃食的频率.在相同的传粉条件下早花期植株单果种子产量显著高于晚花期的种子产量,同时早花期的果实被啃食的频率显著增加.  相似文献   

14.
Measurement of natural selection on correlated characters provides valuable information on fitness surfaces, patterns of directional, stabilizing, or disruptive selection, mechanisms of fitness variation operating in nature, and possible spatial variation in selective pressures. We examined effects of seed weight, germination date, plant size, early growth, and late growth on individual fitness. Path analysis showed that most characters had direct or indirect effects on individual fitness, indicating directional selection. For most early life-cycle characters, indirect effects via later characters exceed the direct causal effect on fitness. Selection gradients were uniform across the experimental site. There was no evidence for stabilizing or disruptive selection. We discuss several definitions of stabilizing and disruptive selection. Although early events in the life of an individual have important causal effects on subsequent characters and fitness, there is no detectable genetic variance for most of these characters, so little or no genetic response to natural selection is expected.  相似文献   

15.
Flowering time, the major regulatory transition of plant sequential development, is modulated by multiple endogenous and environmental factors. By phenotypic profiling of 80 early flowering mutants of Arabidopsis, we examine how mutational reduction of floral repression is associated with changes in phenotypic plasticity and stability. Flowering time measurements in mutants reveal deviations from the linear relationship between the number of leaves and number of days to bolting described for natural accessions and late flowering mutants. The deviations correspond to relative early bolting and relative late bolting phenotypes. Only a minority of mutants presents no detectable phenotypic variation. Mutants are characterized by a broad release of morphological pleiotropy under short days, with leaf characters being most variable. They also exhibit changes in phenotypic plasticity across environments for florigenic-related responses, including the reaction to light and dark, photoperiodic behavior, and Suc sensitivity. Morphological pleiotropy and plasticity modifications are differentially distributed among mutants, resulting in a large diversity of multiple phenotypic changes. The pleiotropic effects observed may indicate that floral repression defects are linked to global developmental perturbations. This first, to our knowledge, extensive characterization of phenotypic variation in early flowering mutants correlates with the reports that most factors recruited in floral repression at the molecular genetic level correspond to ubiquitous regulators. We discuss the importance of functional ubiquity for floral repression with respect to robustness and flexibility of network biological systems.  相似文献   

16.
Variation in flowering time of Arabidopsis thaliana was studied in an experiment with mutant lines. The pleiotropic effects of flowering time genes on morphology and reproductive yield were assessed under three levels of nutrient supply. At all nutrient levels flowering time and number of rosette leaves at flowering varied among mutant lines. The relationship between these two traits depended strongly on nutrient supply. A lower nutrient supply first led to an extension of the vegetative phase, while the mean number of leaves at flowering was hardly affected. A further reduction resulted in no further extension of the vegetative phase and, on average, plants started flowering with a lower leaf number. At low nutrients, early flowering affected the timing of production of siliques rather than the total output, whereas late flowering was favorable at high nutrients. This may explain the fact that many plant species flower at a relatively small size under poor conditions. Flowering time genes had pleiotropic effects on the leaf length, number of rosette and cauline leaves, and number of axillary flowering shoots of the main inflorescence. Silique production was positively correlated with the number of axillary shoots of the main inflorescence; the number of axillary primordia appeared to have a large impact on reproductive yield.  相似文献   

17.
The timing of migration is generally considered of utmost importance for reproduction and survival, and timing is furthermore considered to be under strong genetic control. The individual timing of migration is presumably a result of a combination of genetic, phenotypic and environmental factors as well as some degree of randomness. However, potential differences in consistency of timing between spring and autumn and between migration strategies are not well studied. Using long‐term Danish ringing data, we study such differences by correlating date of ringing with date of recaptures for a suite of common migrating passerines in Denmark. We found that individuals marked early in one year tended to be recaptured early in the same season in a following year indicating that individuals time their migration in spring or autumn similarly between years. The relationship between spring and autumn migration was overall slightly negative, suggesting that birds arriving early in spring tended to depart late in autumn and vice versa. There were only weak effects of geographical location on timing, suggesting that the patterns found are not primarily caused by different populations being involved. Knowledge of individual consistency in migration timing is needed for understanding changes in migration timing. The consistent patterns of repeatabilities within and between seasons found here highlight the importance of timing of migration in songbirds.  相似文献   

18.
Flowering phenology and allozyme variation were studied to test the existence of positive assortative mating for flowering time in a natural population of Primula sieboldii E. Morren, a heterostylous perennial herb, consisting of approximately 180 genets in a deciduous forest. There was significant variation in flowering date among genets, but not between heterostylous morphs. The temporal order of the flowering time of genets was fairly constant for the two years of the study. The spatial heterogeneity of light availability at the study site was small during the flowering season of the species. In order to analyze the extent of genetic differentiation between early- and late-flowering genet groups, allozyme diversities were analyzed with 10 loci. The GST between the early- and late-flowering groups was not significantly different from zero. Evidence of positive assortative mating for flowering time was not detected. Prolongation of flowering duration due to pollen limitation may be one important factor preventing the genetic differentiation of early- and late-flowering groups by enhancing the overlap of flowering time among genets.  相似文献   

19.
植物有性繁殖与资源分配的关系研究对于揭示植物生活史特征及繁育系统进化具有重要意义。新疆郁金香(Tulipa sinkiangensis)是新疆天山北坡荒漠带特有的一种多年生早春短命植物。在自然生境中,该物种仅以有性繁殖产生后代,每株能产生1-8朵花,且不同植株上的花数及果实数以及花序不同位置上的花与果实大小明显不同。本文通过对新疆郁金香有性繁殖与营养生长及植株大小的关系以及花序中不同位置花及果实间的资源分配研究,旨在揭示营养生长、个体大小及开花次序对其繁殖分配的影响。结果表明:在开花和果实成熟阶段,新疆郁金香植株分配给营养器官(鳞茎和地上营养器官)与繁殖器官的资源间均存在极显著的负相关关系(P<0.01),说明其植株的营养生长与生殖生长间存在权衡关系。多花是新疆郁金香的一个稳定性状,其植株上花数目、花生物量、果实生物量和种子数量与植株生物量间均呈极显著的正相关关系(P<0.01),说明新疆郁金香植株的繁殖分配存在大小依赖性。在具2-5朵花的新疆郁金香植株中,花序内各花的生物量、花粉数和胚珠数、结实率、果实生物量、结籽数、结籽率及种子百粒重按其开花顺序依次递减,说明花序内各花和果实的资源分配符合资源竞争假说。植株通过减少晚发育的花或果实获得的资源来保障早发育的花或果实获得较多的资源,从而达到繁殖成功。  相似文献   

20.
Aims Plants can change in phenology and biomass allocation in response to environmental change. It has been demonstrated that nitrogen is the most limiting resource for plants in many terrestrial ecosystems. Previous studies have usually focused on either flowering phenology or biomass allocation of plants in response to nitrogen addition; however, attempts to link flowering phenology and biomass allocation are still rare. In this study, we tested the effects of nitrogen addition on both flowering phenology and reproductive allocation in 34 common species. We also examined the potential linkage between flowering time and reproductive allocation in response to nitrogen addition.Methods We conducted a 3-year nitrogen addition experiment in Tibetan alpine meadow. We measured first flowering date and the reproductive allocation for 34 common plant species in control, low and high nitrogen added plots, respectively. One-way analysis of variance was used to examine differences of first flowering date and reproductive allocation among treatments. The relationships between the change in species first flowering date and change in reproductive allocation in response to nitrogen addition were examined by calculating Pearson correlation coefficients.Important findings For most species, both first flowering date and reproductive allocation significantly responded to nitrogen addition. Nitrogen addition significantly delayed the first flowering date and reduced the reproductive allocation for all graminoid species, but accelerated flowering and increased reproductive allocation for most forb species. We found that changes in first flowering date significantly negatively correlated with the changes in reproductive allocation over species in response to nitrogen, which indicated a positive relationship between flowering response and plant performance in reproductive allocation. Species that advanced their flowering time with nitrogen addition increased their reproductive allocation, whereas those that delayed flowering time tended to decline in reproductive allocation with nitrogen addition. Our results suggest that species-specific switch from vegetative growth to reproductive growth could influence species performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号