首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground crickets Allonemobius fasciatus and A. socius meet in a mosaic zone of overlap and hybridization stretching from the East Coast to at least Illinois. To test whether male calling song differences were enhanced in sympatry, we analyzed the songs of crickets from inside and outside the zone of overlap along two transects. No evidence of calling song displacement was found in A. socius males from populations within the zone of overlap. On the other hand, A. fasciatus displayed calling song displacement in three populations. Our results are consistent with the hypothesis that the selective pressure exerted by the challenge from a related species is frequency dependent. While not a conclusive demonstration, the observed shifts in calling song are strongly suggestive of reproductive character displacement.  相似文献   

2.
In this paper I describe a zone of overlap and hybridization between the ground crickets, Allonemobius fasciatus and A. socius (Orthoptera: Gryllidae). The former occurs in the northeastern United States, the latter is found in the southeastern United States. They meet in a contact zone of variable width that extends from the East Coast to at least Ohio. In the Allegheny Mountains, where appropriate habitats for a species adapted to a northern climate and a species adapted to a southern climate are patchily distributed and widely intermingled, the zone is broad-at least 200 km. Along the coastal plain of New Jersey, where appropriate habitats are not as widely intermingled, the zone is comparatively narrow (5–100 km). Levels of hybridization were assessed by analyzing electrophoretic data, using population genetic models and a character index approach. Both methods of data analysis agreed—where the zone is broader, levels of hybridization appear reduced.  相似文献   

3.
The ground crickets Allonemobius fasciatus and A. socius meet in a mosaic hybrid zone that stretches from New Jersey at least as far west as Illinois. Within mixed populations from the contact zone, “pure” species individuals predominate. To determine whether hybrids are less viable than pure-species individuals, and to assess whether the high proportion of pure-species individuals in mixed populations results from hybrid inviability, we performed a cohort analysis. In this study, five mixed populations from the hybrid zone were each sampled three to five times from the fall of 1986 to the spring of 1988. Individuals were assigned to one of three categories based on their genotypes: A. socius (individuals harboring only alleles unique to A. socius), hybrid (individuals with alleles unique to both species), and A. fasciatus (individuals harboring only alleles unique to A. fasciatus). This sampling and measurement scheme permitted monitoring of the proportion of hybrid individuals in a population over time. The results were fairly consistent. The relative survival of A. socius was greater than the relative survival of members of the other two groups in four of the five populations. The relative viability of A. fasciatus was greater than that of hybrids in one population, approximately equal to that of hybrids in two populations, and less than that of hybrids in two populations. These results not only shed light on an important component of fitness, viability from hatching to adulthood, but they demonstrate that loss of hybrid individuals during the course of the field season will not explain deviations from random mating expectations present in mixed populations in late summer. The deviations must be due to assortative mating or to a reproductive barrier operating prior to egg hatch.  相似文献   

4.
We investigated the effects that habitat variation has on the structure and dynamics of a hybrid zone between two closely related crickets in Connecticut. A collecting protocol was developed in which crickets were sampled from characteristic habitats on either side of the hybrid zone and from two distinct habitat types within the zone. Presumptive pure Gryllus pennsylvanicus were sampled from fields in northwestern Connecticut and represent “inland” populations. “Pure” Gryllus firmus were sampled from beaches along the coast and represent the “coastal” populations. Crickets from within the hybrid zone were sampled from two different soil types: the “loam” populations from loamy soils and the “sand” populations from sandy soils. Moreover, an attempt was made to identify closely adjacent sand and loam localities to determine the scale of habitat variation and its possible effects on hybrid-zone structure. In general, there was little variation in morphological traits or in allozyme and mtDNA genotype frequencies among localities from within each of the four habitat types. Between each of the closely situated sand and loam localities within the hybrid zone, however, there were very significant differences in each of these sets of markers. In addition, crickets from hybrid-zone populations were tested for reproductive isolation. The asymmetric outcome of hybrid crosses that exists across the zone (Harrison, 1983) also exists on a finer ecological scale within the zone. Thus, this hybrid zone is a mosaic of strikingly differentiated populations. The dynamics of hybrid zones with mosaic structures are discussed in contrast to the traditional clinal models. The data are also discussed in light of the semipermeable nature of species boundaries. The extent to which a species boundary is permeable varies not only from one genetic marker to the next, but also with the ecological and geographic context of species interaction.  相似文献   

5.
The sibling ground crickets Allonemobius fasciatus and A. socius meet along a mosaic hybrid zone at ≈ 40°N latitude in eastern North America. In this paper we report the findings of a genetic analysis of calling-song variation within and among six cricket populations sampled along a transect through the hybrid zone in southern New Jersey. We compared aspects of the calling song of both wild-caught and laboratory-reared crickets to test the hypothesis that population differences in song observed in the wild were genetically based. We found significant, species-level differences in all aspects of the calling song, and these differences persisted even after a generation of common-garden rearing in the laboratory, supporting the hypothesis that interspecific variation observed in the wild largely reflects genetic differentiation between the two taxa. A discriminant function analysis indicated that individual crickets could be assigned to the proper taxon with less than 10% error, supporting the premise that calling song could be used by female crickets as a mechanism for species recognition. One population, collected from within the hybrid zone and containing significant numbers of hybrid individuals, was intermediate in its calling song, presumably reflecting this population's mixed genetic makeup. In this hybrid zone population, song phenotype was highly correlated to a hybrid index score generated using species-specific alleles at four diagnostic allozyme markers, suggesting a multigenic basis to calling-song variation in these crickets as well as linkage disequilibrium between markers and song. Based on an analysis of laboratory-reared full-sib families, broad-sense heritabilities for calling-song characteristics were generally significant in the two A. socius populations, whereas many components of song showed no significant family effects in the three A. fasciatus populations. The genotypically mixed, hybrid zone population showed very high heritabilities for most calling-song components, which likely reflect the influence of interspecific gene flow on genetic variation for quantitative traits.  相似文献   

6.
The distribution of multilocus genotypes found within a natural hybrid zone is determined by the sample of genotypes present when the hybrid zone first formed, by subsequent patterns of genetic exchange between the hybridizing taxa, and by drift and selection within each of the hybrid zone populations. We have used anonymous nuclear DNA restriction fragment polymorphisms (RFLPs) to characterize the array of multilocus genotypes present within a well-studied hybrid zone between two eastern North American field crickets, Gryllus pennsylvanicus and Gryllus firmus. These crickets hybridize along a zone of contact that extends from New England to Virginia. Previous studies have shown that both premating and postmating barriers exist between the two cricket species, but the absence of diagnostic morphological and allozyme markers has made it difficult to assess the consequences of these barriers for genetic exchange. Analyses based on four diagnostic anonymous nuclear markers indicate that hybrid zone populations in Connecticut contain few F1 hybrids, and that nonrandom associations persist among nuclear gene markers, between nuclear and cytoplasmic markers, and between molecular markers and morphology. Field cricket populations within the hybrid zone are not “hybrid swarms” but consist primarily of crickets that are very much like one or the other of the parental species. Despite ample opportunity for genetic exchange and evidence for introgression at some loci, the two species remain quite distinct. Such a pattern appears to be characteristic of many natural hybrid zones.  相似文献   

7.
Thorough examinations of purported cases of reproductive character displacement are critical for reaching an understanding of the role of reinforcement in the evolution of reproductive barriers between closely related species. In this paper, we report the results of an extensive investigation of male calling song variation in the ground crickets, Allonemobius fasciatus and A. socius. Contrary to the results of an earlier study, we uncovered little evidence of displacement of songs in areas of overlap. We discuss explanations for the lack of displacement as well as for the discrepancies between the results of the current study and those of the earlier study.  相似文献   

8.
Postinsemination barriers to fertilization generally have been ignored by biologists interested in the origin and nature of reproductive isolation among closely related terrestrial animals. Yet evidence presented in this paper indicates that such a barrier bears primary responsibility for the reproductive isolation between the ground crickets Allonemobius fasciatus and Allonemobius socius. Postinsemination barriers to fertilization may isolate many other terrestrial animals as well, but the design of most laboratory hybridization experiments precludes the detection of these barriers.  相似文献   

9.
In recently diverged species, ancestral polymorphism and introgression can cause incongruence between gene and species trees. In the face of hybridization, few genomic regions may exhibit reciprocal monophyly, and these regions, usually evolving rapidly under selection, may be important for the maintenance of species boundaries. In animals with internal fertilization, genes encoding seminal protein are candidate barrier genes. Recently diverged hybridizing species such as the field crickets Gryllus firmus and G. pennsylvanicus , offer excellent opportunities to investigate the origins of barriers to gene exchange. These recently diverged species form a well-characterized hybrid zone, and share ancestral polymorphisms across the genome. We analyzed DNA sequence divergence for seminal protein loci, housekeeping loci, and mtDNA, using a combination of analytical approaches and extensive sampling across both species and the hybrid zone. We report discordant genealogical patterns and differential introgression rates across the genome. The most dramatic outliers, showing near-zero introgression and more structured species trees, are also the only two seminal protein loci under selection. These are candidate barrier genes with possible reproductive functions. We also use genealogical data to examine the demographic history of the field crickets and the current structure of the hybrid zone.  相似文献   

10.
We studied 75 individuals of the Plains pocket gopher, Geomys bursarius, from eastern New Mexico, where the subspecies major and knoxjonesi hybridize. Each individual was examined for chromosome number, ribosomal DNA, mitochondrial DNA, and three protein systems for which reference parental populations were fixed for alternative alleles. Twenty individuals were indistinguishable from parental major, 14 individuals were indistinguishable from parental knoxjonesi, and 41 individuals had genotypes composed of combinations of character states that distinguish the two parental types. The parental types appear to represent discrete genetic entities that have restricted introgression across a narrow hybrid zone (width approximately 3 km, using the 20/80 criterion). Parental types overlap in geographic distribution near the center of the zone, and changes in mitochondrial DNA and the five nuclear markers are concordant across the zone. It is probable that there is premating isolation between knoxjonesi males and major females. The frequencies of individuals with certain genotypic combinations within our sample imply differential reproductive success of certain genotypes. We propose that F1's and highly heterozygous males are sterile and that hybrid females are less fertile than parental females. These postmating factors, along with premating isolation for one of the reciprocal crosses, probably account for the restriction of gene flow across the contact zone. The structure of the zone can be explained by the “dynamic equilibrium” model.  相似文献   

11.
Natural selection can act against maladaptive hybridization between co‐occurring divergent populations leading to evolution of reproductive isolation among them. A critical unanswered question about this process that provides a basis for the theory of speciation by reinforcement, is whether natural selection can cause hybridization rates to evolve to zero. Here, we investigated this issue in two sibling mosquitoes species, Aedes mariae and Aedes zammitii, that show postmating reproductive isolation (F1 males sterile) and partial premating isolation (different height of mating swarms) that could be reinforced by natural selection against hybridization. In 1986, we created an artificial sympatric area between the two species and sampled about 20,000 individuals over the following 25 years. Between 1986 and 2011, the composition of mating swarms and the hybridization rate between the two species were investigated across time in the sympatric area. Our results showed that A. mariae and A. zammitii have not completed reproductive isolation since their first contact in the artificial sympatric area. We have discussed the relative role of factors such as time of contact, gene flow, strength of natural selection, and biological mechanisms causing prezygotic isolation to explain the observed results.  相似文献   

12.
Samples of Luxilus cornutus, Luxilus chrysocephalus, and their hybrids were collected along hypothesized routes of dispersal from Pleistocene refugia to examine the significance of geographic variation in patterns of introgression between these species. Patterns of allozyme and mitochondrial DNA (mtDNA) variation were generally consistent with those from previous studies. Tests of Hardy-Weinberg equilibrium revealed significant deficiencies of heterozygotes in all samples, indicating some form of reproductive isolation. Mitochondrial DNAs of each species were not equally represented in F1 hybrids; however, this bias was eliminated when the two largest samples were excluded from the analysis. Backcross hybrids exhibited biased mtDNA introgression, as samples from Lake Erie (eastern) and Lake Michigan (western) drainages showed significant excesses of mtDNAs from L. chrysocephalus and L. cornutus, respectively, relative to frequencies of diagnostic allozyme markers. The extent and direction of allozyme and mtDNA introgression was quantified by calculating isolation index values from morphologically “pure” individuals of each species from each locality. Analysis of variance of these measures identified limited introgression of allozyme variants with no geographic pattern, but significant differences in direction of mtDNA introgression between drainages (i.e., postglacial dispersal route). Association between patterns of mtDNA introgression and dispersal route across the latitudinal width of the contact zone is best explained by genetic divergence during past isolation of ancestral populations from these drainages. These results identify a significant role for historical effects in the evolution of reproductive isolation and the process of speciation.  相似文献   

13.
Hybrid zones between recently diverged taxa are natural laboratories for speciation research, allowing us to determine whether there is reproductive isolation between divergent forms and the causes of that isolation. We present a study of a classic avian hybrid zone in North America between two subspecies of the yellow‐rumped warbler (Dendroica coronata). Although previous work has shown very little differentiation in mitochondrial DNA across this hybrid zone, we identified two nuclear loci (one sex‐linked and one autosomal) that show fixed differences across the hybrid zone, in a close concordance with patterns of plumage variation. Temporal stability and limited width of the hybrid zone, along with substantial linkage disequilibrium between these two diagnostic markers in the center of the zone, indicate that there is moderate reproductive isolation between these populations, with an estimated strength of selection maintaining the zone of 18%. Pairing data indicate that assortative mating is either very weak or absent, suggesting that this reproductive isolation is largely due to postmating barriers. Thus, despite extensive hybridization the two forms are distinct evolutionary groups carrying genes for divergent adaptive peaks, and this situation appears relatively stable.  相似文献   

14.
The closely related field crickets Gryllus firmus and Gryllus pennsylvanicus are known to hybridize in a zone of contact that extends over more than 800 km from the Blue Ridge in Virginia to southern Connecticut. Here I present evidence that the extent of temporal reproductive isolation of the two cricket species varies along the length of the zone. Adults of G. firmus and G. pennsylvanicus occur synchronously in Connecticut but G. firmus matures significantly later than G. pennsylvanicus along the Blue Ridge in Virginia. Variation in the extent of temporal isolation is a consequence of intrinsic differences in the egg-to-adult development time of G. firmus from the two localities. In laboratory rearing experiments, there is little variation in development time among crickets from G. pennsylvanicus populations ranging from Vermont to Virginia. However, G. firmus from Virginia takes significantly longer to mature than G. firmus from Connecticut. Comparisons between species from neighboring localities show that lowland Virginia G. firmus take much longer to develop and are larger as adults than montane Virginia G. pennsylvanicus. In Connecticut, crickets of the two species differ very little in development time and body size. Patterns of variation in development time and body size are compared with similar data for frogs along one of the same environmental gradients and for field crickets along similar gradients elsewhere. Although G. firmus and G. pennsylvanicus are temporally isolated in Virginia, adults of the two species do occur together. Examination of Esterase genotypes of field-inseminated females and their progeny from a mixed population on the Blue Ridge suggests that pre-mating barriers other than temporal isolation are not effective in preventing gene exchange.  相似文献   

15.
The impact of different reproductive barriers on species or population isolation may vary in different stages of speciation depending on evolutionary forces acting within species and through species’ interactions. Genetic incompatibilities between interacting species are expected to reinforce prezygotic barriers in sympatric populations and lead to cascade reinforcement between conspecific populations living within and outside the areas of sympatry. We tested these predictions and studied whether and how the strength and target of reinforcement between Drosophila montana and Drosophila flavomontana vary between sympatric populations with different histories and species abundances. All barriers between D. montana females and D. flavomontana males were nearly complete, while in the reciprocal cross strong postzygotic isolation was accompanied by prezygotic barriers whose strength varied according to population composition. Sexual isolation between D. flavomontana females and D. montana males was increased in long‐established sympatric populations, where D. flavomontana is abundant, while postmating prezygotic (PMPZ) barriers were stronger in populations where this species is a new invader and still rare and where female discrimination against heterospecific males was lower. Strengthening of sexual and PMPZ barriers in this cross also induced cascade reinforcement of respective barriers between D. flavomontana populations, which is a classic signature of reinforcement process.  相似文献   

16.
17.
Synopsis Aspects of the reproduction of three sympatric and endemic chaetodontids, Chaetodon austriacus, C. fasciatus and C. paucifasciatus, from the Jordan Gulf of Aqaba were investigated. Chaetodon fasciatus had a higher fecundity than the other species which, in turn, had similar fecundities. The major egg release of C. austriacus and C. paucifasciatus began in August, that of C. fasciatus in September. Based on the gonadosomatic index of both sexes, the spawning period of C. austriacus was from July through October, that of C. paucifasciatus from August through October and that of C. fasciatus from September through December. The maturity length of the three chaetodontids is given and reproductive isolation among the sympatric species is discussed.  相似文献   

18.
The Pliocene rise of the Central American Isthmus has resulted in numerous “geminate pairs,” i.e., closely related species, one on each coast. Such species pairs can provide information on the evolution of isolating mechanisms in allopatry and on the relationship between genetic divergence and reproductive isolation in populations separated at a known time. The sea urchin genus Echinometra has one species, E. vanbrunti, in the eastern Pacific, and two, E. lucunter and E. viridis, in the Caribbean. E. viridis is morphologically distinct from the other two species, leading to the conclusion that E. lucunter and E. vanbrunti constitute a geminate pair. Allozyme data, on the other hand, place the speciation event of the two currently sympatric species after the rise of the Isthmus. We report fertilization experiments between the gametes of the three species performed to determine degree of reproductive isolation. Crosses between E. viridis and E. vanbrunti produce rates of fertilization almost equal to those manifested in homogamic crosses. Sperm of E. lucunter can fertilize eggs of the other two species, but few of its eggs permit fertilization by heterospecific sperm. Contrary to the predictions of the “speciation by reinforcement” hypothesis, degree of incompatibility between the allopatric E. lucunter and E. vanbrunti is higher than between the sympatric E. lucunter and E. viridis. Despite the incomplete and unidirectional nature of their gametic isolation, E. lucunter and E. viridis maintain their genetic integrities. Consideration of the likely phylogenetic relationships between the three species suggests that incompatibility of E. lucunter eggs with heterospecific sperm has evolved in the last 3.5 million years, after the rise of the Isthmus. There is no correlation between genetic divergence and strength of reproductive isolation, either within Echinometra, or among the geminate species pairs of echinoids that have been studied to date. Because recognition between echinoid gametes depends on the chemical compositions of a sperm protein and an egg glycoprotein, the appearance of gametic isolation would require only the fixation of a few mutations in each population on either side of a geographic barrier and could be independent of any other kind of genetic divergence. Thus, in animals with external fertilization, speciation need not be accompanied by major genomic reorganization.  相似文献   

19.
20.
Patterns of life-history adaptation and reproductive isolation were investigated in the acridid grasshoppers Melanoplus sanguinipes and M. devastator, which hybridize along an altitudinal gradient in the Sierra Nevada of California. Melanoplus sanguinipes females crossed with M. devastator males produced eggs that were approximately half as viable as eggs from other crosses. Diminished viability was not attributable either to infection by Wolbachia pipientis or to failure of sperm transfer. When offered an opportunity to choose a mate, females from all populations discriminated against males of the other species, whereas in no-choice tests measuring copulation duration only females from the tails of the clines showed preferences. Melanoplus sanguinipes, found at high elevations where the growing season is short, exhibited faster egg hatch, faster larval development, smaller adult body sizes, and smaller clutch sizes than M. devastator. Melanoplus devastator, from California's Central Valley, endured a hot and dry summer in a reproductive diapause that was absent in M. sanguinipes. Clines in reproductive diapause and clutch size coincided with the region of reproductive incompatibility. Development time, body size, and hatch time also changed across the hybrid zone, but the regions of largest transitions in these traits were either difficult to locate using the limited populations studied here or were not coincident with the zone's center. A method is described for combining ecological and phylogenetic analyses to address the unknown issue of whether life-history divergence has conributed to reproductive isolation in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号