首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the midwestern United States the Daphnia pulex complex consists of a mosaic of sexual and asexual populations, providing a useful model system for studying the evolutionary forces underlying the maintenance of sex. One asexual and two sexual populations were surveyed for genetic variation for isozymes, mitochondrial DNA, and life-history characters. While the sexual populations exhibited substantial levels of genetic variance for fitness characters, no variation was detected in the asexual population at any level. However, a parallel survey among asexual clones derived from other ponds revealed large amounts of quantitative variation among clones, even among those with the same molecular profile. As a group, the asexuals are more variable for life histories than are the sexual populations. The molecular data indicate a relatively recent origin for the extant asexual D. pulex. The polyphyletic origin of these clones, combined with their microevolutionary potential, provides an explanation for their broad geographic distribution. The distribution of sex in the complex cannot be explained with the standard models that assume an invariant asexual population in reproductive isolation from the parental species. Although the frequency of asexuality may be driven by the spread of a sex-limited meiosis suppressor through sexual populations, the complete displacement of sexuality may be prevented by ecological distinctions between the two classes of individuals. On average, the asexuals are larger but produce smaller clutches than the sexuals.  相似文献   

2.
Trade-offs among life-history traits are often thought to constrain the evolution of populations. Here we report the disappearance of a trade-off between early fecundity on the one hand, and late-life fecundity, starvation resistance, and longevity on the other, over 10 yr of laboratory selection for late-life reproduction. Whereas the selected populations showed an initial depression in early-life fecundity, they later converged upon the controls and then surpassed them. The evolutionary loss of the trade-off among life-history traits is considered attributable to the following factors: (1) the existence of differences in the culture regimes of the short- and long-generation populations other than the demographic differences deliberately imposed; (2) adaptation of one or both of these sets of populations to the unique aspects of their culture regimes; (3) the existence of an among-environment trade-off in the expression of early fecundity in the two culture regimes, as reflected in assays that mimic those regimes. The trade-off between early and late-life reproductive success, as manifest among divergently selected populations, is apparent or not depending on the assay environment. This demonstration that strong genotype-by-environment interactions can obscure a fundamental trade-off points to the importance of controlling all aspects of the culture regime of experimental populations and the difficulty of doing so even in the laboratory.  相似文献   

3.
Alternative models of the maintenance of genetic variability, theories of life-history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life-history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age-specific competitive mating ability, age-specific survivorship, body mass, and fertility. Variance-component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation-accumulation theory, but not the antagonistic-pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity that are predicted by “good genes” models of sexual selection. Additive genetic coefficients of variation for life-history characters are larger than those for body weight. Finally, this set of male life-history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations.  相似文献   

4.
The genetic variance-covariance matrix, G, is determined in part by functional architecture, the pathways by which variation in genotype influences phenotype. I develop a simple architectural model for G for two traits under directional selection constrained by their dependence on a common limiting resource. I assume that genetic variance is maintained by mutation-selection balance. The relative numbers of loci that play a role in acquiring versus allocating a limiting resource play a crucial role in determining genetic covariance. If many loci are involved in acquiring a resource, genetic covariance may be either negative or positive at equilibrium, depending on the fitness function and the input of mutational variance. The form of G does not necessarily reveal the constraint on resource acquisition inherent in the system, and therefore studies estimating G do not test for the existence of life-history tradeoffs. Characters may evolve in patterns that are unpredictable from G. Experiments are suggested that would indicate if this model could explain observations of positive genetic covariance.  相似文献   

5.
Despite numerous adaptive scenarios concerning the evolution of plant life-history phenologies few studies have examined the heritable basis for and genetic correlations among these phenologies. Documentation of genetic variation for and covariation among reproductive phenologies is important because it is this variation/covariation that will determine the potential for response to evolutionary forces. To address this problem, I conducted a breeding experiment to determine narrow-sense heritabilities for and genetic correlations among the phenologies of life-history events and plant size in Chamaecristafasciculata, a temperate summer annual plant species. Paternal families showed no evidence of heritable variation for two estimates of plant size, six measures of reproductive phenology or two fitness components. Similarly, paternal estimates of genetic correlations among these traits were low or zero. In contrast, maternal estimates of heritability suggested the influence of maternal parent on one estimate of plant size and four phenological traits. Likewise, maternal effects influenced maternal estimates of genetic correlations. These maternal effects can arise from three sources: endosperm nuclear, cytoplasmic genetic and/or maternal phenotypic. The degree to which the phenology of one life-history trait acts as a constraint on the evolution of other phenological traits depends on the source of the maternal influence in this species.  相似文献   

6.
A modified minimum evolution approach is used to estimate covariance matrices for hypothetical ancestors. Branch lengths are calculated as the mean disparity in corresponding ancestor-descendent covariances. Branches are longest leading to terminal populations and subspecies, while interspecific branches are relatively short, indicating a general conservation of covariance structure among species despite a high degree of intraspecific variability. Absolute deviations in covariance structure are not correlated with phenotypic divergence. Interpreted in light of other studies, the analyses suggest that deviations in covariance structure are most strongly associated with the formation of diagnosably distinct taxa and stochastic sampling of genotypes at the population level. There is no evidence for restructuring of phenotypic covariance structure in association with reproductive isolation. The results suggest that phenotypic covariances are dynamic over short time scales and do not support attempts to extrapolate genetic covariance structure to explain or predict macroevolutionary change. This study further demonstrates that branch lengths, which are not usually analyzed in detail, contain valuable evolutionary information complementary to that residing in the branching pattern.  相似文献   

7.
8.
A simple way to think of evolutionary trade-offs is to suppose genetic effects of opposed direction that give rise to antagonistic pleiotropy. Maintenance of additive genetic variability for fitness related characters, in association with negative correlations between these characters, may result. In the cactophilic species Drosophila buzzatii, there is evidence that second-chromosome polymorphic inversions affect size-related traits. Because a trade-off between body size and larval developmental time has been reported in Drosophila, we study here whether or not these inversions also affect larva-adult viability and developmental time. In particular, we expect that polymorphic inversions make a statistically significant contribution to the genetic correlation between body size (as measured by thorax length) and larval developmental time. This contribution is expected to be in the direction predicted by the trade-off, namely, those flies whose karyotypes cause them to be genetically larger should also have a longer developmental time than flies with other karyotypes. Using two different experimental approaches, a statistically significant contribution of the second-chromosome inversions to the phenotypic variances of body size and developmental time in D. buzzatii was found. Further, these inversions make a positive contribution to the total genetic correlation between the traits, as expected by the suggested trade-off. The data do not provide evidence as to whether the genetic correlation is due to antagonistic pleiotropic gene action or to gametic disequilibrium of linked genes that affect one or both traits. The results do suggest, however, a possible explanation for the maintenance of inversion polymorphism in this species.  相似文献   

9.
We explored the extent to which the soil seed bank differed genetically and spatially in comparison to two actively growing stages in a natural population of Plantago lanceolata. All seed-bank seeds, seedlings, and adults of P. lanceolata within eight subunits in a larger population were mapped, subjected to starch gel electrophoresis, and allozyme analysis in 1988. Gel electrophoresis was also used to estimate the mating system in two years, 1986 and 1988. The spatial distributions of seeds, seedlings, and adults were highly coincident. Allele frequencies of the dormant seeds differed significantly from those of the adults for four of the five polymorphic loci. In addition, a comparison of the genotype frequencies of the three life-history stages indicated that the seed bank had an excess of homozygotes. Homozygosity, relative to Hardy-Weinberg expectations, decreased during the life cycle (for seed bank, seedlings, and adults respectively: Fit = 0.19, 0.09, 0.01; Fis = 0.14, 0.04, -0.12). Spatial genetic differentiation increased sixfold during the life cycle: (for seed bank, seedling and adults: Fs1??? = 0.02, 0.05, 0.12). The apparent selfing rate was 0.01 in 1986 and 0.09 in 1988. These selfing rates are not large enough to account for the elevated homozygosity of the seed bank. Inbreeding depression, overdominance for fitness, and a “temporal Wahlund's effect” are discussed as possible mechanisms that could generate high homozygosity in the seed bank, relative to later life-history stages. In Plantago lanceolata, the influence of the mating system and the “genetic memory” of the seed bank are obscured by the time plants reach the reproductive stage.  相似文献   

10.
Recent quantitative genetic studies have attempted to infer long-term selection responsible for differences in observed phenotypes. These analyses are greatly simplified by the assumption that the within-population genetic variance remains constant through time and over space, or for the multivariate case, that the matrix of additive genetic variances and covariances (G matrix) is constant. We examined differences in G matrices and the association of these differences with differences in multivariate means (Mahalanobis D2) among 11 populations of the California endemic annual plant, Clarkia dudleyana. Based on nine continuous morphological traits, the relationship between Mahalanobis D2 and a distance measure summarizing differences in G matrices reflected no concomitant change in (co)variances with changes in means. Based on both broad- and narrow-sense analyses, we found little evidence that G matrices differed between populations. These results suggest that both the additive and nonadditive (co)variances for traits have remained relatively constant despite changes in means.  相似文献   

11.
In a heterogeneous world, the optimal strategy for an individual is to continually change its phenotype to match the optimal type. However, in the real world, organisms do not behave in this fashion. One potential reason why is that phenotypic plasticity is costly. We measured production and maintenance costs of plasticity in the freshwater crustacean Daphnia pulex (Cladocera: Crustacea) in response to the presence of chemical signals from a predator, the insect Chaoborus americanus. We looked at three changes in juvenile body size and shape: body length, body depth, and tailspine length. Fitness costs were measured as changes in adult growth and fecundity, and summarized as the intrinsic rate of increase (r) for individuals reared in the presence or absence of Chaoborus extract. The cost of plasticity was measured as a multiple regression of mean clone fitness against trait and trait plasticity. We found scant evidence for either production or maintenance costs of plasticity. We also failed to find direct costs of these juvenile structures, which is surprising, as others have found such costs. We attribute the lack of measurable direct or plasticity costs to a decrease in metabolic rates in the presence of the Chaoborus extract. This decrease in metabolic rate may have compensated for any cost increases. We call for more extensive measures of the costs of plasticity, especially under natural conditions, and the incorporation of costs into evolutionary models.  相似文献   

12.
13.
Morphological and life-history traits often vary among populations of a species. Traits generally do not vary independently, but show patterns of covariation that can arise from genetic and environmental influences on phenotype. Covariance of traits may arise at an among-population level when genetically influenced traits diverge among populations in a correlated manner. Genetic correlations caused by pleiotropy and/or gene linkage can cause traits to evolve together, but among-population covariance can also arise among traits that are not genetically correlated. For example, “selective covariance” can arise when natural selection directly causes correlated change in a suite of traits. Similarly, mutation, migration, and drift may also sometimes cause correlated genetic changes among populations. Because covariation of traits among populations can arise by several different processes, the evolution of suites of traits must be interpreted with great caution. We discuss the sources of among-population covariance and illustrate one approach to identifying the sources' using data on floral traits of Dalechampia scandens (Euphorbiaceae).  相似文献   

14.
Experiments in laboratory populations of Drosophila melanogaster have shown a negative genetic correlation between early-life fecundity on the one hand and starvation resistance and longevity on the other. Selection for late-life reproductive success resulted in long-lived populations that had increased starvation resistance but diminished early-life fecundity relative to short-lived controls. This pattern of differentiation proved, however, to be unstable. When assayed in a standard high-fecundity environment, the relative early fecundity of the long- and short-lived stocks reversed over a decade. That is, the long-lived populations came to have greater relative early-life fecundity, late-life fecundity, longevity and starvation resistance. Nevertheless, when these populations were assayed in other assay environments, the original trade-off was still present. We investigated the genetic structure of the short- and long-lived populations, to ask whether the inconstancy of the trade-off, as inferred from among population comparisons, is reflected in the pattern of genetic correlations within populations. For this purpose, lines from each of the short- and long-lived populations that had been selected for starvation resistance were compared with unselected controls. The direct and correlated responses of these starvation selected populations suggest that (1) the original genetic trade-off was still present in the ancestral short- and long-lived populations, even when it was no longer apparent from their comparison; (2) the trade-off was present in both assay environments; and (3) selectable genotype × environment variation exists for early fecundity. We suggest that a failure of the pattern of differentiation among populations to reflect the pattern of genetic correlations, if common in natural populations, will prevent the reliable inference of genetic trade-offs from comparisons of most natural populations.  相似文献   

15.
Several species of the diatom Pseudo‐nitzschia produce the neurotoxin domoic acid (DA). Consumption of fish and shellfish that have accumulated this potent excitotoxin has resulted in severe illness and even death in humans, marine mammals, and seabirds. Pseudo‐nitzschia pungens (Grunow ex Cleve) Hasle is a cosmopolitan diatom commonly occurring in the waters of the Pacific Northwest (PNW) and the eastern North Atlantic, including the North Sea. However, genetic and physiological relationships among populations throughout this large geographic distribution have not been assessed. Population genetic parameters (e.g., Hardy–Weinberg equilibrium, linkage equilibrium, FST) calculated for P. pungens collected from the Juan de Fuca eddy region in the PNW indicated the presence of two distinct groups that were more divergent from each other than either was from a P. pungens sample from the North Sea. Geographic heterogeneity was also detected within each of the two PNW groups. These results suggested that the populations of P. pungens recently mixed in the Juan de Fuca eddy region (a seasonally retentive feature off the coasts of Washington State, USA, and Vancouver Island, Canada) but did not exchange genetic material by sexual reproduction. Alternatively, these two groups may be cryptic (morphologically identical, but reproductively isolated) species. Identifying cryptic diversity in Pseudo‐nitzschia is important for bloom prediction and aiding the identification of molecular markers that can be used for rapid detection assay development.  相似文献   

16.
Mutations have the ability to produce dramatic changes to covariance structure by altering the variance of covariance-generating developmental processes. Several evolutionary mechanisms exist that may be acting interdependently to stabilize covariance structure, despite this developmental potential for variation within species. We explore covariance structure in the crania of laboratory mouse mutants exhibiting mild-to-significant developmental perturbations of the cranium, and contrast it with covariance structure in related wild muroid taxa. Phenotypic covariance structure is conserved among wild muroidea, but highly variable and mutation-dependent within the laboratory group. We show that covariance structures in natural populations of related species occupy a more restricted portion of covariance structure space than do the covariance structures resulting from single mutations of significant effect or the almost nonexistent genetic differences that separate inbred mouse strains. Our results suggest that developmental constraint is not the primary mechanism acting to stabilize covariance structure, and imply a more important role for other mechanisms.  相似文献   

17.
Applications of quantitative techniques to understanding macroevolutionary patterns typically assume that genetic variances and covariances remain constant. That assumption is tested among 28 populations of the Phyllotis darwini species group (leaf-eared mice). Phenotypic covariances are used as a surrogate for genetic covariances to allow much greater phylogenetic sampling. Two new approaches are applied that extend the comparative method to multivariate data. The efficacy of these techniques are compared, and their sensitivity to sampling error examined. Pairwise matrix correlations of correlation matrices are consistently very high (> 0.90) and show no significant association between matrix similarity and phylogenetic relatedness. Hierarchical decomposition of common principal component (CPC) analyses applied to each clade in the phylogeny rejects the hypothesis that common principal component structure is shared in clades more inclusive than subspecies. Most subspecies also lack a common covariance structure as described by the CPC model. The hypothesis of constant covariances must be rejected, but the magnitudes of divergence in covariance structure appear to be small. Matrix correlations are very sensitive to sampling error, while CPC is not. CPC is a powerful statistical tool that allows detailed testing of underlying patterns of covariation.  相似文献   

18.
Abstract Understanding the utility and limitations of molecular markers for predicting the evolutionary potential of natural populations is important for both evolutionary and conservation genetics. To address this issue, the distribution of genetic variation for quantitative traits and molecular markers is estimated within and among 14 permanent lake populations of Daphnia pulicaria representing two regional groups from Oregon. Estimates of population subdivision for molecular and quantitative traits are concordant, with Q ST generally exceeding G ST. There is no evidence that microsatellites loci are less informative about subdivision for quantitative traits than are allozyme loci. Character-specific comparison of Q ST and G ST support divergent selection pressures among populations for the majority of life-history traits in both coast and mountain regions. The level of within-population variation for molecular markers is uninformative as to the genetic variation maintained for quantitative traits. In D. pulicaria , regional differences in the frequency of sex may contribute to variation in the maintenance of expressed within-population quantitative-genetic variation without substantially impacting diversity at the genic level. These data are compared to an identical dataset for 17 populations of the temporary-pond species, D. pulex .  相似文献   

19.
Predictions using quantitative genetic models generally assume that the variance-covariance matrices remain constant over time. This assumption is based on the supposition that selection is generally weak and hence variation lost through selection can be replaced by new mutations. Whether this is generally true can only be ascertained from empirical studies. Ideally for such a study we should be able to make a prediction concerning the relative strength of selection versus genetic drift. If the latter force is prevalent then the variance-covariances matrices should be proportional to each other. Previous studies have indicated that females in the two sibling cricket species Allonemobius socius and A. fasciatus do not discriminate between males of the two species by their calling song. Therefore, differences between the calling song of the two males most likely result from drift rather than sexual selection. We test this hypothesis by comparing the genetic architecture of calling song of three populations of A. fasciatus with two populations of A. socius. We found no differences among populations within species, but significant differences in the G (genetic) and P (phenotypic) matrices between species, with the matrices being proportional as predicted under the hypothesis of genetic drift. Because of the proportional change in the (co)variances no differences between species are evident in the heritabilities or genetic correlations. Comparison of the two species with a hybrid population from a zone of overlap showed highly significant nonproportional variation in genetic architecture. This variation is consistent with a general mixture of two separate genomes or selection. Qualitative conclusions reached using the phenotypic matrices are the same as those reached using the genetic matrices supporting the hypothesis that the former may be used as surrogate measures of the latter.  相似文献   

20.
Abstract. Quantitative genetics theory provides a framework that predicts the effects of selection on a phenotype consisting of a suite of complex traits. However, the ability of existing theory to reconstruct the history of selection or to predict the future trajectory of evolution depends upon the evolutionary dynamics of the genetic variance-covariance matrix (G-matrix). Thus, the central focus of the emerging field of comparative quantitative genetics is the evolution of the G-matrix. Existing analytical theory reveals little about the dynamics of G, because the problem is too complex to be mathematically tractable. As a first step toward a predictive theory of G-matrix evolution, our goal was to use stochastic computer models to investigate factors that might contribute to the stability of G over evolutionary time. We were concerned with the relatively simple case of two quantitative traits in a population experiencing stabilizing selection, pleiotropic mutation, and random genetic drift. Our results show that G-matrix stability is enhanced by strong correlational selection and large effective population size. In addition, the nature of mutations at pleiotropic loci can dramatically influence stability of G. In particular, when a mutation at a single locus simultaneously changes the value of the two traits (due to pleiotropy) and these effects are correlated, mutation can generate extreme stability of G. Thus, the central message of our study is that the empirical question regarding G-matrix stability is not necessarily a general question of whether G is stable across various taxonomic levels. Rather, we should expect the G-matrix to be extremely stable for some suites of characters and unstable for others over similar spans of evolutionary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号