首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A contextual analysis combined with path analysis was applied to detect ecotype-specific past selection in hierarchically structured populations of wild barley, Hordeum spontaneum . In our analysis a multiple regression model incorporated several individual and ecotype-level unmeasured (derived) traits obtained by factor analysis from 20 measured morphological and phenological traits. Under favourable conditions (high water and nutrients) both individual and ecotype plant size (RF1) were significant predictors of individual plant fitness, estimated by either reproductive biomass or yield. Both individual and ecotype size of reproductive structures (RF2) were significantly related to individual reproductive biomass. Individual yield, however, significantly correlated with ecotype RF2 only. Transition to reproduction (RF3) correlated with neither reproductive biomass nor yield at individual level, but correlated with two estimates of fitness at ecotype level. In all cases, selection at the individual and ecotype levels was in opposition. We interpret the observed effect of ecotype identity on individual fitness not as a current group selection, but as a constraining effect of ecotype-specific past selection. The four ecotypes went through an environmentally specific selection process in their own environments with the optimal strategy evolved. Consequently, this strategy may have a constraining effect on plant performance in other environments. Under conditions of either low water or low nutrients the ecotype level did not contribute to individual fitness. The latter may suggest that a mechanism for plant responses to stress is largely independent of plant origin, with a difference between ecotypes under stressful conditions due entirely to the difference in amount, not architecture, of plasticity. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 313–318.  相似文献   

2.
Divergent natural selection is often thought to be the principal factor driving phenotypic differentiation between populations. We studied two ecotypes of the aquatic isopod Asellus aquaticus which have diverged in parallel in several Swedish lakes. In these lakes, isopods from reed belts along the shores colonized new stonewort stands in the centre of the lakes and rapid phenotypic changes in size and pigmentation followed after colonization. We investigated if selection was likely to be responsible for these observed phenotypic changes using indirect inferences of selection (FSTQST analysis). Average QST for seven quantitative traits were higher than the average FST between ecotypes for putatively neutral markers (AFLPs). This suggests that divergent natural selection has played an important role during this rapid diversification. In contrast, the average QST between the different reed ecotype populations was not significantly different from the mean FST. Genetic drift could therefore not be excluded as an explanation for the minor differences between allopatric populations inhabiting the same source habitat. We complemented this traditional FSTQST approach by comparing the FST distributions across all loci (n = 67–71) with the QST for each of the seven traits. This analysis revealed that pigmentation traits had diverged to a greater extent and at higher evolutionary rates than size‐related morphological traits. In conclusion, this extended and detailed type of FSTQST analysis provides a powerful method to infer adaptive phenotypic divergence between populations. However, indirect inferences about the operation of divergent selection should be analyzed on a per‐trait basis and complemented with detailed ecological information.  相似文献   

3.
The objective of this study was to understand and characterize the physiological and biochemical tolerance mechanisms of Argania spinosa under drought stress for selection tolerant ecotypes. Significant differences were observed among ecotypes in indices of leaf water status studied: stomatal conductance (gs), predawn leaf water potential (Ψpd) and leaf relative water content. There was a significant decrease in these physiological traits with increasing degree of drought stress in all ecotypes. Drought stress significantly increased endogenous H2O2 and lipid peroxidation. Moderate and severe drought stress increased significantly the catalase, superoxide dismutase, peroxidase, polyphenoloxidase and lipoxygenase activities, depending on time. Their constitutive activities were higher in inland ecotypes than in coastal ecotypes. According to canonical discriminant analysis, the inland ecotypes were essentially distinguished from the coastal ecotypes by the following physiological and biochemical traits: Ψpd, gs, polyphenol oxidase, superoxide dismutase and malonyldialdehyde. Inland ecotypes seem to be more tolerant to drought stress than coastal ecotypes.  相似文献   

4.
Understanding the emergence of species through the process of ecological speciation is a central question in evolutionary biology which also has implications for conservation and management. Lake trout (Salvelinus namaycush) is renowned for the occurrence of different ecotypes linked to resource and habitat use throughout North America. We aimed to unravel the fine genetic structure of the four lake trout ecotypes in Lake Superior. A total of 486 individuals from four sites were genotyped at 6822 filtered SNPs using RADseq technology. Our results revealed different extent of morphological and genetic differentiation within the different sites. Overall, genetic differentiation was weak but significant and was on average three times higher between sites (mean FST = 0.016) than between ecotypes within sites (mean FST = 0.005) indicating higher level of gene flow or a more recent shared ancestor between ecotypes within each site than between populations of the same ecotype. Evidence of divergent selection was also found between ecotypes and/or in association with morphological variation. Outlier loci found in genes related to lipid metabolism and visual acuity were of particular interest in this context of ecotypic divergence. However, we did not find clear indication of parallelism at the genomic level, despite the presence of phenotypic parallelism among some ecotypes from different sampling sites. Overall, the occurrence of different levels of both genomic and phenotypic differentiation between ecotypes within each site with several differentiated loci linked to relevant biological functions supports the presence of a continuum of divergence in lake trout.  相似文献   

5.
Here we document phenotypic differences between serpentine and nonserpentine ecotypes of Collinsia sparsiflora, as well as patterns of selection in these contrasting soil habitats. We transplanted the two parental ecotypes and experimental F2 hybrids into six field sites, and collected morphological, phenological and fitness data on emergent plants. To focus on edaphically mediated selection, rather than on pollinator-mediated selection, we used pollinator-exclusion cages. Transplanted parentals of the two ecotypes showed genetic differentiation for floral traits, but not for phenological traits or cotyledon size. For the F2 hybrids growing on serpentine soils, there was significant directional selection on cotyledon size, flower size and flower shape. However, the pattern of selection did not differ significantly between serpentine and nonserpentine sites. Overall, we did not see evidence for divergent selection on the two soil types. We conclude that differences in floral traits between the ecotypes do not reflect adaptation to physical conditions associated with soil type, and that there are unmeasured traits that must be contributing to ecotypic differentiation.  相似文献   

6.
Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal‐offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST =  0.183, p < .001; ΦST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.  相似文献   

7.
Aims The two coexisting Leymus chinensis ecotypes exhibit remarkable divergences in adaptive strategies under drought and salinity in semi-humid meadows and semi-arid steppes. In order to detect the major genetic and environmental factors dominating the intraspecific phenotype variations and ecotype formation, the questions regarding the two distinct phenotypic forms (ecotypes) in L. chinensis were addressed: (i) did environments drive the L. chinensis ecotype formation? (ii) was there a molecular basis for the morphological divergence between the two ecotypes? (iii) which driving force dominated the intraspecies divergence, divergent natural selection, genetic drift or stabilizing selection?Methods We applied a series experiments on demographical, morphological and physiological traits of two Leymus chinensis ecotypes with gray green (GG) and yellow green (YG) leaf color in nine wild sites along a longitudinal gradient from 114° to 124°E in northeast China. The environmental data including mean annual precipitation, mean annual temperature, elevation and soil properties were collected. We compared the differences of morphological, physiological and genetic differentiations between the two ecotypes.Important findings The GG type exhibited stronger fitness than YG type from the population densities, morphological traits (e.g. shoot height, leaf area, leaf and seed weights et al.), leaf mass per area (LMA) and physiological traits [relative water content (RWC), proline, soluble sugar contents]. Most of above phenotypes (e.g. total shoot densities, spike length et al.) were significantly correlated with mean annual precipitation, mean annual temperature and soil water content (SWC), rarely a correlated with soil pH and soil nutrient. Transplanted populations showed convergence trend by their leaf chlorophyll contents and osmotic adjustments (proline and soluble sugar contents) in the greenhouse, but still exhibited their divergences between two ecotypes in the outdoor transplantation, suggesting that whether L. chinensis ecotype differentiated could be largely affected by the environmental conditions. Furthermore, by the comparison result of quantitative genetic variation (Q ST) values from phenotypes with theoretical neutral genetic differentiation (F ST), differentiation in phenotypic traits greatly surpassed neutral predictions, implying that directional natural selection played a crucial role in L. chinensis ecotype differentiation. In addition, microsatellite analysis from Neighbor-joining tree and Bayesian assignment generated into two groups according to ecotypes, indicating molecular genetic differentiation also propelled the two ecotypes divergence. We conclude that L. chinensis population variations were driven by combing divergent natural selection (precipitation, temperature and SWCs) along the large-scale gradient and significantly intrinsic genetic differentiation.  相似文献   

8.
Gene exchange between locally adapted plant populations can have significant evolutionary consequences, including changes in genetic diversity, introduction of adaptive or maladaptive traits, disruptive of coadaptive gene complexes, and the creation of new ecotypes or even species. The potential for introgression between divergent populations will depend on the strength of selection against nonnative characters. Morphologically variable F2 hybrids of two Gilia capitata subspecies were used to evaluate the strength of phenotypic selection and the response to selection in the home habitats of each subspecies. At both sites, traits diagnostic of the subspecies were subject to significant phenotypic selection, probably mediated by direct selection on unmeasured correlated characters. Phenotypic selection favored native morphologies in all but a single case; leaf shape of one subspecies was favored in both habitats. The strength of selection varied between sites, with one site selecting more strongly against nonnative characters. Offspring of the F2 hybrids showed a significant evolutionary response to selection when grown in a common environment. Evolution was in the direction of similarity with the subspecies native to the site where selection was imposed. This result reveals that native character states are adaptive and suggests that selection will maintain native morphologies even after a substantial influx of genes from an ecologically and morphologically distinct, and locally adapted subspecies.  相似文献   

9.
Local adaptation and phenotypic plasticity are two alternative mechanisms used by invasive plants for range expansion. We conducted a series of experiments to investigate the role of these mechanisms in the recent expansion of the invasive Ipomoea cairica from non-saline to salt-stressed coastal habitats. A comparison of the plant’s photosynthetic traits and construction costs across habitats was conducted through a field survey. Meanwhile, a full factorial greenhouse experiment was conducted with two ecotypes (non-saline and coastal) of I. cairica and two salinity gradients (water and 4 g L-1 NaCl solution) to evaluate the roles of the two strategies by comparing their main traits. The results revealed that the construction cost and Amax of I. cairica did not change with the habitat type. The ecotype and saline treatments, however, significantly influenced the plant growth. The non-saline ecotype (NE) generally showed higher or equal plasticity of biomass-allocation and functional traits compared to the coastal ecotype (CE). However, the fitness and biomass of the NE significantly decreased with salinity, whereas those aspects of the CE did not change. Our results indicate that the recent expansion of I. cairica into coastal areas may be accelerated by the local adaptation of the CE to salt stress. Additionally, in South China, the CE will most likely evolve adaptations to both saline and non-saline environments, which will further broaden the invasion range of I. cairica in the future.  相似文献   

10.
Plant populations often adapt to local environmental conditions. Here we demonstrate local adaptation in two subspecies of the California native annual Gilia capitata using standard reciprocal transplant techniques in two sites (coastal and inland) over three consecutive years. Subspecies performance in each site was measured in four ways: probability of seedling emergence, early vegetative size (length of longest leaf), probability of flowering, and total number of inflorescences produced per plant. Analysis of three of the four variables demonstrated local adaptation through site-by-subspecies interactions in which natives outperformed immigrants. The disparity between natives and immigrants in their probability of emergence and probability of flowering was greater at the coastal site than at the inland site. Treated in isolation, these two fitness components suggest that migration from the coast to the inland site may be less restricted by selection than migration in the opposite direction. Two measurements of individual size (leaf length and number of inflorescences), suggest (though not strongly) that immigrants may be subject to weaker selection at the coastal site than at the inland site. A standard cohort life table is used to compare replacement rates (R0) for each subspecies at each site. Comparisons of R0s suggest that immigrants are under a severe demographic disadvantage at the coastal site, but only a small disadvantage at the inland site. The results point out the importance of integrating over several fitness components when documenting the magnitude of local adaptation.  相似文献   

11.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

12.
Coastal and offshore ecotypes of common bottlenose dolphins have been recognized in the western South Atlantic, and it is possible that trophic niche divergence associated with social interactions is leading them to genetic and phenotypic differentiation. The significant morphological differentiation observed between these ecotypes suggests they represent two different subspecies. However, there is still a need to investigate whether there is congruence between morphological and genetic data to rule out the possibility of ecophenotypic variation accompanied by gene flow. Mitochondrial DNA (mtDNA) control region sequence data and 10 microsatellite loci collected from stranded and biopsied dolphins sampled in coastal and offshore waters of Brazil as well as 106 skulls for morphological analyses were used to determine whether the morphological differentiation was supported by genetic differentiation. There was congruence among the data sets, reinforcing the presence of two distinct ecotypes. The divergence may be relatively recent, however, given the moderate values of mtDNA nucleotide divergence (dA = 0.008), presence of one shared mtDNA haplotype and possibly low levels of gene flow (around 1% of migrants per generation). Results suggest the ecotypes may be in the process of speciation and reinforce they are best described as two different subspecies until the degree of nuclear genetic divergence is thoroughly evaluated: Tursiops truncatus gephyreus (coastal ecotype) and T. t. truncatus (offshore ecotype). The endemic distribution of T. t. gephyreus in the western South Atlantic and number of anthropogenic threats in the area reinforces the importance of protecting this ecotype and its habitat.  相似文献   

13.
Populations of the marine gastropod Littorina saxatilis from exposed rocky shores of NW Spain provide one of the few putative cases of sympatric ecological speciation. Two ecotypes with large differences in shell morphology and strong assortative mating are living at different vertical levels of the shore separated by a few meters. It has been hypothesized that shell size is the main determinant for the reproductive isolation observed between the ecotypes, and that several shell shape traits are subject to divergent natural selection and are responsible for the adaptation of each ecotype to its respective habitat. Using embryos extracted from wild females we obtain estimates of genetic variation for shell size and shape and compare them with those from neutral molecular markers. Estimates of heritability are significantly larger for the ecotype found in the upper shore than for that in the lower shore, in concordance with a similar result observed for heterozygosity of neutral markers. The large genetic differentiation between ecotypes for the shell traits, contrasting the smaller close to neutral differentiation between populations of the same ecotype, supports the implication of the traits in adaptation.  相似文献   

14.
We examined genotype (G) by environment (E) interactions for fitness in mesic and xeric ecotypes of the self-fertilizing annual grass, Avena barbata and their recombinant inbred hybrid progeny. Fitness was assayed (1) in experimental water and nutrient treatments in the greenhouse and (2) in common gardens in each ecotype's native habitat. G x E interactions were significant in the greenhouse. Nevertheless, the same recombinant genotypes tended to have high fitness across all water and nutrient treatments. G x E interactions were less pronounced in the field, and were driven by the contrast between the uniformly low survivorship at the mesic site in 2004 and genetic variation in fitness at the other years/site combinations. Moreover, the mesic ecotype consistently outperformed the xeric in both field and greenhouse. Several of the recombinant genotypes outperformed the parents in the novel greenhouse treatments, but these genotypes did not outperform the mesic parent in field trials. Indeed, it is only in the comparison between field and greenhouse environments that there was a noticeable change in the identity of the most-fit genotype. The results provide evidence that hybridization can create genotypes that are better adapted to newer environments such as those imposed in our greenhouse experiments.  相似文献   

15.
Summary Plants of an F2 generation derived from crosses between two ecotypes of Plantago lanceolata L. had previously been studied in a greenhouse. In the present experiment, F2 plants were transplanted into their original habitats (a hayfield and a pasture). Six allozyme loci were used as markers in the analysis of survival and performance of the segregating genotypes. Fitness differences between the plants were large enough to detect natural selection. In both transplantation sites selection appeared to operate, though in different ways. In the hayfield habitat directional selection was hypothesized and both survival and performance of the plants were related to genotype, with the genotypes originating from the hayfield almost always performing better. In the pasture habitat where the habitat is not uniform and unpredictable hazardous droughts occur, survival was nearly genotype independent and environmentally determined, whereas performance of the plants was genotype dependent. The expression of two morphological characteristics, number of leaves and leaf length, was often not in concordance with the greenhouse results and was contradictory in both sites. Expression of both characters in the field, therefore, appeared to be strongly dependent on the general performance and growth conditions of the plant and not on the genotype.Grassland Species Research Group Publication no. 143  相似文献   

16.
BACKGROUND AND AIMS: Serpentine soils provide a highly selective substrate for plant colonization and growth and represent an ideal system for studying the evolution of plant-ecotypes. In the present study the aim was to identify the genetic architecture of morphological traits distinguishing serpentine and non-serpentine ecotypes of Silene vulgaris. METHODS: Using an F(2) mapping population derived from an intraspecific cross between a serpentine and a non-serpentine ecotype of S. vulgaris, the genetic architecture of 12 morphological traits was explored using a quantitative trait locus (QTL) analysis. KEY RESULTS: The QTL analysis identified a total of 49 QTLs, of which 24 were classified as major QTLs. The mean number of QTLs per trait category was found to correspond well with numbers reported in the literature for similar crosses. Clustering of QTLs for different traits was found on several linkage groups. CONCLUSIONS: Morphological traits that differentiate the two ecotypes are strongly correlated, presumably as a consequence of the joint effects of extensive linkage of QTLs for different traits and directional selection. The signature of consistent directional selection was found for leaf and shoot trait divergence. Intraspecific ecotype differences in S. vulgaris were found to be distributed across the entire genome. The study shows that QTL analyses on non-model organisms can provide novel insights into the genetic basis of plant diversification.  相似文献   

17.
Across-species comparisons show that inherent variation in relative growth rate (RGR) and its underlying traits are correlated with habitat productivity. In this study, we test the hypothesis that growth rate-related traits confer differential selective effects in contrasting nutrient environments. We specifically test whether high RGR is targeted by selection in nutrient-rich environments whereas low values of traits that underlie RGR [specific leaf area (SLA), leaf mass fraction and leaf area ratio (LAR)] confer a direct fitness advantage in nutrient-poor environments, resulting in selection of low RGR as a correlated response. We measured RGR, its underlying component traits, and estimated fitness in a range of wild barley (Hordeum spontaneum) accessions grown under high and low nutrient conditions. Selection on component traits differed between the two environments, while total selection of RGR was not significant. Using multiple regression and path analysis to estimate direct fitness effects, a selective advantage of high LAR and SLA was demonstrated only under nutrient-rich conditions. While supporting the view that observed associations between habitat richness and some RGR-component traits reflect adaptation to differing nutrient regimes, our data suggest that direct selection targets component traits rather than RGR itself.  相似文献   

18.
Identifying traits and agents of selection involved in local adaptation is important for understanding population divergence. In southern Sweden, the moth‐pollinated orchid Platanthera bifolia occurs as a woodland and a grassland ecotype that differ in dominating pollinators. The woodland ecotype is taller (expected to influence pollinator attraction) and produces flowers with longer spurs (expected to influence efficiency of pollen transfer) compared to the grassland ecotype. We examined whether plant height and spur length affect pollination and reproductive success in a woodland population, and whether effects are non‐additive, as expected for traits influencing two multiplicative components of pollen transfer. We reduced plant height and spur length to match trait values observed in the grassland ecotype and determined the effects on pollen removal, pollen receipt, and fruit production. In addition, to examine the effects of naturally occurring variation, we quantified pollinator‐mediated selection through pollen removal and seed production in the same population. Reductions of plant height and spur length decreased pollen removal, number of flowers receiving pollen, mean pollen receipt per pollinated flower, and fruit production per plant, but no significant interaction effect was detected. The selection analysis demonstrated pollinator‐mediated selection for taller plants via female fitness. However, there was no current selection mediated by pollinators on spur length, and pollen removal was not related to plant height or spur length. The results show that, although both traits are important for pollination success and female fitness in the woodland habitat, only plant height was sufficiently variable in the study population for current pollinator‐mediated selection to be detected. More generally, the results illustrate how a combination of experimental approaches can be used to identify both traits and agents of selection.  相似文献   

19.
Surveys of genomic variation have improved our understanding of the relationship between fitness‐related phenotypes and their underlying genetic basis. In some cases, single large‐effect genes have been found to underlie important traits; however, complex traits are expected to be under polygenic control and elucidation of multiple gene interactions may be required to fully understand the genetic basis of the trait. In this study, we investigated the genetic basis of the ocean‐ and river‐maturing ecotypes in anadromous Pacific lamprey (Entosphenus tridentatus). In Pacific lamprey, the ocean‐maturing ecotype is distinguished by advanced maturity of females (e.g., large egg mass) at the onset of freshwater migration relative to immature females of the river‐maturing ecotype. We examined a total of 219 adult Pacific lamprey that were collected at‐entry to the Klamath River over a 12‐month period. Each individual was genotyped at 308 SNPs representing known neutral and adaptive loci and measured at morphological traits, including egg mass as an indicator of ocean‐ and river‐maturing ecotype for females. The two ecotypes did not exhibit genetic structure at 148 neutral loci, indicating that ecotypic diversity exists within a single population. In contrast, we identified the genetic basis of maturation ecotypes in Pacific lamprey as polygenic, involving two unlinked gene regions that have a complex epistatic relationship. Importantly, these gene regions appear to show stronger effects when considered in gene interaction models than if just considered additive, illustrating the importance of considering epistatic effects and gene networks when researching the genetic basis of complex traits in Pacific lamprey and other species.  相似文献   

20.
Parallel evolution of similar phenotypes provides strong evidence for the operation of natural selection. Where these phenotypes contribute to reproductive isolation, they further support a role for divergent, habitat‐associated selection in speciation. However, the observation of pairs of divergent ecotypes currently occupying contrasting habitats in distinct geographical regions is not sufficient to infer parallel origins. Here we show striking parallel phenotypic divergence between populations of the rocky‐shore gastropod, Littorina saxatilis, occupying contrasting habitats exposed to either wave action or crab predation. This divergence is associated with barriers to gene exchange but, nevertheless, genetic variation is more strongly structured by geography than by ecotype. Using approximate Bayesian analysis of sequence data and amplified fragment length polymorphism markers, we show that the ecotypes are likely to have arisen in the face of continuous gene flow and that the demographic separation of ecotypes has occurred in parallel at both regional and local scales. Parameter estimates suggest a long delay between colonization of a locality and ecotype formation, perhaps because the postglacial spread of crab populations was slower than the spread of snails. Adaptive differentiation may not be fully genetically independent despite being demographically parallel. These results provide new insight into a major model of ecologically driven speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号