首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A simple and sensitive flow injection chemiluminescence (FI‐CL) method was developed for the determination of naphazoline hydrochloride (NPZ). The method is based on the enhancing effect of NPZ on the weak CL signal from the reaction of KIO4 with H2O2. Experimental parameters that affected the CL signal, including the pH of the KIO4 solution, concentrations of KIO4, H2O2 and disodium‐EDTA and flow rate were optimized. Under the optimum conditions, the increment of CL intensity was linearly proportional to the concentration of NPZ in the range 5.0 × 10?6 to 70 × 10?6 mol/L. The detection limit was 1.0 × 10?6 mol/L and the relative standard deviation for 50 × 10?6 mol/L NPZ solution was 2.8% (n = 11). In addition, a high throughput of 120 samples/h was achieved. The utility of this method was demonstrated by determining NPZ in pharmaceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The oxidation reaction of H2O2 with KIO4 can produce chemiluminescence (CL) in the presence of the surfactant Tween40 and the CL intensity of the CL system KIO4–H2O2–Tween40 can be strikingly enhanced after injection of tannic acid. On this basis, a flow injection method with CL detection was established for the determination of tannic acid. The method is simple, rapid and effective to determine tannic acid in the range of 7.0 × 10?9 to 1.0 × 10?5 mol/L with a determination limit of 2.3 × 10?9 mol/L. The relative standard deviation is 2.6% for the determination of 5.0 × 10?6 mol/L tannic acid (n = 11). The method has been applied to determine the content of tannic acid in industrial wastewater with satisfactory results. It is believed that the CL reaction formed singlet oxygen 1O2* and the emission was from an excited oxygen molecular pair O2(1Δg)O2(1?g) in the KIO4–H2O2–Tween40 reaction. Tween40 played an important role in enhancing stabilization of the excited oxygen molecular pair O2(1Δg)O2(1?g) and in increasing CL intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off‐line gold nanoparticle (AuNP)‐catalyzed luminol–H2O2 CL system. By contrast, flavonoids enhanced the CL intensity of an on‐line AuNP‐catalyzed luminol–H2O2 CL system. In the off‐line system, the AuNPs were prepared beforehand, whereas in the on‐line system, AuNPs were produced by on‐line mixing of luminol prepared in a buffer solution of NaHCO3 ? Na2CO3 and HAuCl4 with no need for the preliminary preparation of AuNPs. The on‐line system had prominent advantages over the off‐line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off‐line AuNP‐catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy‐sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on‐line system was ascribed to the presence of flavonoids promoting the on‐line formation of AuNPs, which better catalyzed the luminol–H2O2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP‐catalyzed CL system.  相似文献   

5.
Hu Y  Li G  Zhang Z 《Luminescence》2011,26(5):313-318
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

7.
A new chemiluminescence (CL) reaction between luminol and diperiodatoargentate {K2 [Ag (H2IO6) (OH) 2]} was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate. Therefore a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. A possible mechanism of the CL reaction was proposed via the investigation of the CL kinetic characteristics, the CL spectrum and the UV absorption spectra of some related substance. The concentration range of linear response was 5.1 × 10?8 to 5.1 × 10?6 mol L?1 with a detection limit of 1.9 × 10?8 mol L?1 (3σ). The proposed method had good reproducibility with a relative standard deviation of 2.8% (n = 7) for 5.1 × 10?7 mol L?1 of amikacin sulfate. It was successfully applied to determine amikacin sulfate in serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A novel, rapid and sensitive method was described for the determination of epinephrine (EP) using flow injection analysis coupled with chemiluminescence (CL) detection, which based on EP enhanced the weak CL emission of luminol–KIO4 system in NaOH solution. Parameters affecting the CL intensity and reproducibility were optimized systematically. Under the optimized experiment conditions, the net CL intensity was proportional to the concentration of EP in the range of 5.0 × 10?8 to 1.5 × 10?6 mol/L with a detection limit of 1.9 × 10?9 mol/L. The relative standard deviation (RSD) was found to be 0.7% for 13 replicate determinations of 3.0 × 10?7 mol/L EP. The applicability of the proposed method was illustrated in the determination of EP in pharmaceutical preparation. The recoveries of EP at different levels in EP hydrochloride injection were between 95.4 and 104.7%. One assay procedure takes only 27 s, and the sampling rate was calculated about to be 130 samples/h. The possible mechanism of the enhanced CL intensity was studied by examining CL spectra and UV–vis spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Stopped‐flow time courses for chemiluminescence (CL) of the KIO4‐luminol‐Mn2+system showed an instantaneous jump in initial signal followed by two distinct bands. A kinetic model of the form with ten adjustable parameters was proposed to account for CL intensity (I) versus time (t) profiles. The three terms in the model represent the three CL bands. Each band was comprised of a rise part and an exponential decay corresponding to the formation and deactivation of the CL emitter. CL bands could have originated from different CL pathways with the participation of reactive species such as O2?, ?OH and 1O2 generated in the reactions involving IO4?, O2 and Mn2+. Subsequent reactions of these reactive species with luminol induced CL emissions. Simulation parameters together with peak positions and intensities of the three CL bands were found to vary in different manners by changing conditions such as reagent concentration, pH and temperature. The temperature‐dependence of the rate constants yielded activation energies of 73.2 ± 2.8, 70.1 ± 2.4 and 67.2 ± 1.2 kJ?mol‐1 for the three decay processes. Moreover, different substances exhibited a significant influence on the three CL bands and their simulation parameters. The numerous parameters and characteristics of CL emissions could serve as multiple probes for detecting analytes, making this system promising for potential analytical applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and sensitive chemiluminescence (CL) method combined with flow injection technique was developed for the determination of naproxen. It was based upon the weak CL signal arising from the reaction of KIO4 with H2O2 being significantly increased by naproxen in the presence of europium(III) ion. The experimental conditions that affected the CL signal were carefully optimized and the CL reaction mechanism was briefly discussed. Under the optimum conditions, the increment of CL intensity was proportional to the concentration of naproxen ranging from 5.0 × 10?8 to 5.0 × 10?6 g/mL. The detection limit was 1 × 10?8 g/mL naproxen and the relative standard deviation for 5.0 × 10?7 g/mL naproxen solution was 2.1% (n = 11). The proposed method was applied to the determination of naproxen in tablets and in spiked human urine samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A novel cataluminescence (CTL) sensor using ZrO2 nanoparticles as the sensing material was developed for the determination of trace dimethylamine in air samples based on the catalytic chemiluminescence (CL) of dimethylamine on the surface of ZrO2 nanoparticles. The CTL characteristics and the different factors on the signal intensity for the sensor, including nanomaterials, working temperature, wavelength and airflow rate, were investigated in detail. The CL intensity on ZrO2 nanoparticles was the strongest among the seven examined catalysts. This novel CL sensor showed high sensitivity and selectivity to gaseous dimethylamine at optimal temperature of 330°C. Quantitative analysis was performed at a wavelength of 620 nm. The linear range of CTL intensity vs concentration of gaseous dimethylamine was 4.71 × 10?3 to 7.07 × 10?2 mg L?1 (r = 0.9928) with a detection limit (3σ) of 6.47 × 10?4 mg L?1. No or only very low levels of interference were observed while the foreign substances such as benzene, hydrochloric acid, methylbenzene, chloroform, n‐hexane and water vapor were passing through the sensor. The response time of the sensor was less than 50 s, and the sensor had a long lifetime of more than 60 h. The sensor was successfully applied to the determination of dimethylamine in artificial air samples, and could potentially be applied to analysis of nerve agents such as Tabun (GA). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A novel, rapid and sensitive chemiluminescence (CL) method for the determination of oxytetracycline hydrochloride (OTCH) is described in this paper. The presented method was based on the fact that OTCH could immensely enhance the CL of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium (II) in acidic medium. Under optimal experimental conditions, CL intensity was favorably linear for OTCH in the range 5.0 × 10?7 to 5.0 × 10?5 g/ml, with a detection limit of 1.5 × 10?7 g/ml (S/N = 3). The relative standard detection was 4.76% for 5.0 × 10?6 g/ml (n = 11). This method was successfully applied to the analysis of OTCH in milk and egg white samples. According to the results of the kinetic curves for OTCH in the Ru(bipy)32+–Ce(SO4)2 CL system, together with CL and ultraviolet (UV)–visible spectra, the possible mechanism of the CL reaction is discussed briefly.  相似文献   

13.
《Luminescence》2003,18(1):19-24
Using a highly sensitive single photon counter, a spontaneous chemiluminescence (CL) study on rice (Oryza sativa L.) seeds stored in different years was carried out. We first observed that the degree of ageing in rice seeds was related to the intensity of spontaneous CL during early imbibition (0–30 min). Rice seeds stored for a shorter time had a stronger intensity of CL in early imbibition. The germination rate of rice seeds showed an obvious positive correlation with the intensity of spontaneous CL. Singlet oxygen (1O2) in rice seeds during early imbibition was investigated by a CL method using a cypridina luciferin analogue, 2‐methyl‐6‐(p‐methoxyphenyl)‐3,7‐dihydroimidazo [1,2α] pyrazin‐3‐one (MCLA), as a selective CL probe. Additional experimental evidence for the formation of 1O2 came from the quenching effect of sodium azide (NaN3) on MCLA‐mediated rice seeds' CL. Analysis based on the experimental results demonstrated that spontaneous CL in rice seeds during early imbibition was mainly contributed by singlet oxygen (1O2). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Uniform molecular imprinting microspheres were prepared using precipitation polymerization with thifensulfuron‐methyl (TFM) as template, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. TFM could be selectively adsorbed on the molecularly imprinted polymers (MIPs) matrix through the hydrogen bonding interaction and the adsorbed TFM could be sensed by its strikingly enhancing effect on the weak chemiluminescence (CL) reaction between luminol and hydrogen peroxide. On this basis, a novel CL sensor for the determination of TFM using MIPs as recognition elements was established. The logarithm of net CL intensity (ΔI) is linearly proportional to the logarithm of TFM concentration (C) in the range from 1.0 × 10?9 to 5.0 × 10?5 mol L?1 with a detection limit of 8.3 × 10?10 mol L?1 (3σ). The results demonstrated that the MIP–CL sensor was reversible and reusable and that it could strikingly improve the selectivity and sensitivity of CL analysis. Furthermore, it is suggested that the CL enhancement of luminol–H2O2 by TFM might be ascribed to the enhancement effect of CO2, which came from TFM hydrolysis in basic medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A novel galangin–potassium permanganate (KMnO4)–polyphosphoric acid (PPA) system was found to have an outstanding response to tryptophan (Trp). Trp determination using this KMnO4–PPA system was enhanced significantly in the presence of galangin. A highly sensitive flow‐injection chemiluminescence (CL) method to determine Trp was developed based on the CL reaction of galangin–KMnO4–Trp in PPA media. The presence of galangin, a member of the flavonol class of flavonoid complexes, greatly increased the luminous intensity of Trp in KMnO4–PPA systems. Under optimized conditions, Trp was determined in the 0.05–10 µg/mL range, with a detection limit (3σ) of 5.0 × 10?3 µg/mL. The relative standard deviation (RSD) was 1.0% for 11 replicate determinations of 1.0 µg/mL Trp. Two synthetic samples were determined selectively with recoveries of 98.4–100.1% in the presence of other amino acids. The possible mechanism is summarized as follows: excited states of Mn(II)* and Mn(III * types are the main means of generating chemical luminescent species, and Trp concentration and luminescence intensity have a linear relationship, which enables quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This method is based on the enhancing effect of codeine (COD) and paracetamol (PAR) on the chemiluminescence (CL) reaction of Ru(phen)32+ with Ce(IV). In the batch mode, COD gives a relatively sharp peak with the highest CL intensity at 4.0 s, whereas the maximum CL intensity of the PAR appears at ~60 s after injection of Ce(IV) solution. Whole CL time profiles allowed use of the time‐resolved CL data in combination with multiway calibration techniques, as multiway partial least squares (N‐PLS), for the quantitative determination of both COD and PAR in binary mixtures. In this work, we found that the impact of Ce(IV) concentration on the CL intensity was different for COD and PAR. Therefore, a Ce(IV) concentration mode was added to the time and sample modes to obtain 3D data. The percent relative standard deviation (%RSD) values for 10 determinations of 1.0 × 10?5 mol/L of COD and 1.0 × 10?4 mol/L of PAR were 6.1% and 8.7%, respectively. The limit of detection (LOD) values (S/N = 3) were 0.9 × 10?8 mol/L and 1.0 × 10?6 mol/L for COD and PAR, respectively. The proposed method was successfully applied to the determination of PAR and COD in commercial pharmaceutical formulations. Acceptable recoveries (90–110%) were obtained for the quantification of these drugs in the real samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and simple flow‐injection chemiluminescence (FI‐CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)–formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H2SO4, KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 × 10?2–7.0 mg/L for naphazoline hydrochloride and 5.0 × 10?2–10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter‐day and intra‐day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 × 10?3 mg/L for naphazoline hydrochloride and 3.47 × 10?2 mg/L for oxymetazoline hydrochloride (signal‐to‐noise ratio ≤3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A remarkable method for the highly sensitive detection of phenylalanine and tryptophan based on a chemiluminescence (CL) assay was reported. It was found that fluorescent copper nanoclusters capped with cysteine (Cys‐CuNCs) strongly enhance the weak CL signal resulting from the reaction between luminol and H2O2. Of the amino acids tested, phenylalanine and tryptophan could enhance the above CL system sensitively. Under optimum conditions, this method was satisfactorily described by a linear calibration curve over a range of 1.0 × 10?6 to 2.7 × 10?5 M for phenylalanine and 1.0 × 10?7 to 3.0 × 10?5 M for tryptophan, respectively. The effect of various parameters such as Cys‐CuNC concentration, H2O2 concentration and pH on the intensity of the CL system were also studied. The main experimental advantage of the proposed method was its selectivity for two amino acids compared with others. To evaluate the applicability of the method to the analysis of a real biological sample it was used to determine tryptophan and phenylalanine in human serum and remarkable results were obtained.  相似文献   

19.
A novel and sensitive chemiluminescence (CL) procedure based on the synergetic catalytic effects of gold nanoclusters (Au NCs) and graphene quantum dots (GQDs) was developed for the reliable measurement of cimetidine (CM). The initial experiments showed that the KMnO4‐based oxidation of alkaline rhodamine B (RhoB) generated a very weak CL emission, which was intensively enhanced in the simultaneous presence of Au NCs and GQDs. CL intermediates can be adsorbed and gathered on the surface of Au NCs, becoming more stable. GQDs participate in the energy transferring processes and facilitate them. These improving effects were simultaneously obtained by adding both Au NCs and GQDs into the RhoB‐KMnO4 reaction. Consequently, the increasing effect of the Au NCs/GQDs mixture was more than that of pure Au NCs or GQDs, and a new nano‐assisted powerful CL system was achieved. Furthermore, a marked quenching in the emission of the introduced CL system was observed in the presence of CM, so the system was examined to design a sensitive sensor for CM. After optimization of influencing parameters, the linear lessening in CL emission intensity of KMnO4‐RhoB‐Au NCs/GQDs was verified for CM concentrations in the range 0.8–200 ng ml?1. The limit of detection (3Sb/m) was 0.3 ng ml?1. Despite being a simple CL method, good sensitivity was obtained for CM detection with reliable results for CM determination in human urine samples.  相似文献   

20.
A chemiluminescent technique was applied to determine antioxidative activities of adriamycin, farmorubicin, mitomycin C and bleomycin against superoxide anion radical (O2?) in aprotic medium. The antioxidant capacity was expressed as the decrease in light emission from the O2? solution by and antibiotic. A KO2 solution in dimethyl sulphoxide (DMSO) and 18‐crown‐6 ether were used for the generation of O2?. The results showed that the examined compounds decreased the chemiluminescence (CL) sum from the O2?‐generating system in a dose‐dependent manner. Among the antibiotics examined, adriamycin, farmorubicin and bleomycin exhibited antioxidant activity almost comparable to that of 1,2‐dihydroxy benzene‐3,5‐disulphonic acid (tiron), an efficient of the O2? inhibitor. Mitomycin C was two‐times less effective as tiron in decreasing the initial CL intensity. The proposed assay with usage of ultraweak CL technique and the KO2–DMSO–crown ether system was useful for the evaluation of antioxidant activity in aprotic solvents. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号