首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversity within species is a potentially important, but poorly studied, determinant of plant community dynamics. Here we report experiments testing the influence of genotype identity and genotypic diversity both on the invasibility of a foundation, matrix-forming species (Kentucky bluegrass, Poa pratensis), and on the invasiveness of a colonizing species (dandelion, Taraxacum officinale). Genotypes of Kentucky bluegrass in monoculture showed significant variation in productivity and resistance to dandelion invasion, but the productivity and invasion resistance of genotypic mixtures were not significantly different from those of genotypic monocultures. Indirect evidence suggested temporal shifts in the genotypic composition of mixtures. Dandelion genotypes in monoculture showed striking and significant variation in productivity and seed production, but there was no significant tendency for these variables in mixtures to deviate from null expectations based on monocultures. However, productivity and seed production of dandelion mixtures were consistently greater than those of the two least productive genotypes, and statistically indistinguishable from those of the three most productive genotypes, suggesting the possibility of greater invasiveness of genotypically diverse populations in the long run due to dominance by highly productive genotypes. In both experiments, the identity of genotypes was far more important than genetic diversity per se.  相似文献   

2.
The fitness of genotypes created by crossing strains of Chlamydomonas reinhardtii was measured in axenic pure culture in a set of chemically defined environments. There was substantial and highly significant genotype-by-environment interaction, with genetic correlations between environments averaging only about +0.1 for both r and K. Higher-order interactions with combinations of environmental factors appeared to be no less important than simple interactions with single factors. The importance of genotype-by-environment interaction increased with the number of environmental factors manipulated. The linear reaction norms of genotypic score on environmental mean score varied substantially among genotypes and often intersected. There was also some evidence that nonallelic genetic interactions were present, and varied among environments. The genetic correlation of r with K also varied among environments, being significantly negative in some but not in others. These results are similar in all important respects to those previously obtained with different species, and suggest that genotype-by-environment interaction is important at all genetic scales. It is argued that they provide empirical support for a general theory of diversity, the “Tangled Bank,” based on the different response of genotypes to the range of conditions found in heterogeneous natural environments.  相似文献   

3.
In variable environments, selection should favor generalists that maintain fitness across a range of conditions. However, costs of adaptation may generate fitness trade‐offs and lead to some compromise between specialization and generalization that maximizes fitness. Here, we evaluate the evolution of specialization and generalization in 20 populations of Drosophila melanogaster experimentally evolved in constant and variable thermal environments for 3 years. We developed genotypes from each population at two temperatures after which we measured fecundity across eight temperatures. We predicted that constant environments would select for thermal specialists and that variable environments would select for thermal generalists. Contrary to our predictions, specialists and generalists did not evolve in constant and spatially variable environments, respectively. However, temporal variation produced a type of generalist that has rarely been considered by theoretical models of developmental plasticity. Specifically, genotypes from the temporally variable selective environment were more fecund across all temperatures than were genotypes from other environments. These patterns suggest certain allelic effects and should inspire new directions for modeling adaptation to fluctuating environments.  相似文献   

4.
The fact that apomictic taxa typically occupy a wider range of environments than their sexual relatives has generated the hypothesis that apomicts are more likely to possess “general-purpose genotypes,” i.e., genotypes whose performance is relatively insensitive to changes in environmental conditions. This hypothesis was tested by cloning sexual and apomictic females of Antennaria parvifolia (Asteraceae) and growing each genotype in six growth-chamber environments varying in temperature and moisture levels. A joint regression analysis revealed that the survival of apomictic genotypes was significantly less sensitive to environmental conditions than that of sexual genotypes but demonstrated no differences with regard to flowering or biomass. However, the coefficient of variation in biomass across the six environments was significantly lower for apomicts than for sexuals, and the geometric mean of survival over the six environments was significantly higher for apomicts. Apomicts significantly exceeded sexuals in mean survival, mean flower-head production, and mean biomass. These results support the hypothesis that apomictic genotypes are more “general-purpose” than sexuals, and increase the difficulty of explaining the persistence of sexual reproduction in A. parvifolia.  相似文献   

5.
Abstract Seven grass species were grown in monocultures and in multispecies mixtures along a gradient of total nutrient levels that ranged from 1/64 to 16× the normal level of nutrient solution. The seven grasses represented three ecological groups: (i) three perennial species native to Australia (Themeda triandra, Poa labillardieri and Danthonia carphoides); (ii) two introduced annuals (Vulpia bromoides and Hordeum leporinum); and (iii) two introduced perennials (Lolium perenne and Dactylis glomerata). We hypothesized that the native grasses would prove less competitive when grown at increased nutrient levels than those introduced from Europe. Results supported the hypothesis. The native species were unable to compete in mixtures even at the lowest nutrient level, where T. triandra was the most productive species in monoculture. Lolium perenne and Dactylis glomerata dominated mixtures at intermediate nutrient levels. The responses of the annual introduced grasses differed in that Vulpia bromoides showed an optimum at intermediate nutrient levels in both monoculture and in mixtures, whereas Hordeum leporinum dominated at the highest nutrient levels in mixture but was suppressed by V. bromoides, L. perenne and D. glomerata at intermediate levels. The results are discussed in terms of predicting species responses in mixtures from their performance in monocultures as well as in terms of previous observations on the sequential changes in botanical composition of south‐eastern Australian grasslands after 150 years of continuous grazing by sheep.  相似文献   

6.
The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4‐ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield, and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one‐third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year‐to‐year variation in yields was lowest in the three‐cultivar switchgrass mixtures and Cave‐In‐Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high‐quality biomass feedstocks.  相似文献   

7.
The performance of three genotypes (LL, LR, RR) of tadpoles resulting from the hybrid mating system of Rana lessonae (phenotype L, genotype LL) and Rana esculenta (phenotype E, genotype LR) was determined in artificial ponds. The effects of interspecific competition and pond drying on growth, development, and survival of tadpoles were used to measure the performance of genotypes and the relative fitness of offspring. Among the three genotypes, tadpoles from the homogametic mating RR had the lowest survival, growth, and development under all environmental conditions. Body size of the LL and LR genotype tadpoles at metamorphosis was reduced by competition and pond drying. Days to metamorphosis were also higher for the LL and LR genotype tadpoles in competition ponds. The proportion of individuals metamorphosing of each genotype was differentially lowered by competition and pond drying. The LL genotype produced more metamorphs than the LR genotype in the constant water level ponds, but the LR genotype produced more in drying ponds. In competition ponds, the LR genotype produced more metamorphs than the LL genotype, but the LL genotype produced more metamorphs in ponds without competition. The RR genotype produced no metamorphs in any of the experimental environments. Increased performance of LR offspring from the heterogametic mating, in harsh conditions, and reduced performance of RR offspring from the homogametic mating, even under favorable conditions, relative to the parental genotype (LL) suggests that the population dynamics of this hybridogenetic system is strongly dependent on mate choice in mixed populations and the subsequent pond environment females select for oviposition and larval development.  相似文献   

8.
Lolium perenne cv. S.23, L. multiflorum cv. RvP, and Trifolium repens cvs S.184 and Olwen, were grown in mixed sward and monoculture during 1979. Whereas in mixtures grass roots absorbed more 32P than clover roots, in monoculture clover generally absorbed more 32P than grass roots. This showed that grass was a very strong competitor for uptake in mixed swards. Clover and grass monocultures absorbed most 32P from 10 or 15 cm depth in the soil, while grass in mixtures absorbed most 32P at 22.5 cm depth. Comparing varieties, in monocultures in June, Olwen was most active in absorbing 32P at 15 cm. In August, Olwen absorbed more at 15 cm and 22.5 cm than S.184 or the grass varieties. Differences in absorption depth between varieties were less in mixtures than in monocultures. S.23 absorbed more 32P in the late season than RvP, both in monoculture and in mixtures. Thus Olwen differed from S. 184 in depth and timing of uptake, whilst S.23 differed from RvP in time of uptake. Such varietal differences could be exploited by manipulation of depth and timing of fertiliser application to increase the precision of sward management.  相似文献   

9.
Summary The data on number of grains/spike, 100 grain weight and grain yield/plant in eighteen genotypes of four genome combinations (AABB- 4 genotypes, AABBDD- 6 genotypes, AABBRR- 5 genotypes and AABBDDRR- 3 genotypes) were recorded for eight environments created by combining two dates of sowing, two fertilizer regimes and two spacings. Two stability parameters-regression coefficient (b) and deviation from regression (Sd 2) were computed. Joint regression analyses revealed that the genotypes differed significantly for these characters. A significant variation due to environments was also found. A comparative study of performance of genotypes belonging to four genome combinations revealed that the genes for stability are not uniformly distributed in these genome combinations. Stability may largely depend on gene combination rather than on genome combination.  相似文献   

10.
Vertebrate animals reproducing without genetic recombination typically are hybrids, which have large ranges, are locally abundant, and live in disturbed or harsh habitats. This holds for the hemiclonal hybridogenetic frog Rana esculenta: it is widespread in Europe and commonly is found in disturbed habitats such as gravel pits. We hypothesize that its widespread occurrence may either be the result of natural selection for a single hemiclone acting as a broadly adapted “general-purpose” genotype, or of interclonal selection, which maintains multiple hemiclones that each are relatively narrowly adapted and perform differently across environments, that is, the Frozen Niche Variation model. We tested these competing hypotheses using 1000-L outdoor artificial ponds to rear tadpoles of the parental species (Rana lessonae [LL] and Rana ridibunda [RR]) alone, and each of three hemiclones of Rana esculenta (GUT1, GUT2, GUT3) alone, and in mixed hemiclonal populations from hatching to metamorphosis. Tadpoles of three coexisting hemiclones from a single natural population (near Gütighausen, Switzerland) were reared in both two- and three-way mixtures in equal total numbers at high and low density. For each species and hemiclone, the proportion of tadpoles metamorphosing decreased as the density of tadpoles increased, with the three hemiclones spanning the range of values exhibited by the two parental species. LL and GUT1 tadpoles produced the highest proportion of metamorphs, whereas tadpoles of RR produced the fewest metamorphs at both densities. GUT1 tadpoles also produced the largest metamorphs at low density, GUT2 and GUT3 tadpoles produced smaller metamorphs than did GUT1 tadpoles at the low density, but the three hemiclones did not differ from each other at high density. The parental species (LL and RR) were intermediate in metamorphic size to the hemiclones at low density, but all genotypes converged on a similar size at high density. Length of the larval period also was affected by density, but its effect was dependent on genotype. GUT1 tadpoles had the shortest larval period at the low density, but larval period was longer and not different between GUT1, GUT3, and LL at high density. RR tadpoles had the longest larval period at both densities. The most dramatic results were that three genotypes (GUT1, GUT2, and RR) maintained rank order and increased days to metamorphosis from low to high density, whereas two genotypes (GUT3 and LL) changed rank order and decreased days to metamorphosis from low to high density. Mixtures of hemiclones in two- and three-way combinations facilitated the proportion of tadpoles metamorphosing for GUT1 and GUT2 at both densities, but only at the low density for GUT3 tadpoles. Results from this experiment are incompatible with the General-Purpose Genotype model as a global explanation of hybrid abundance in these frogs. Alternatively, the Frozen Niche Variation prediction of general performance superiority of clonal mixtures relative to single clone populations is strongly supported. The data confirm that fitness advantages of hemiclones change, depending on the environment, such that in temporally and spatially heterogeneous habitats like ponds, frequency-dependent selection among hemiclones may promote coexistence in hemiclonal assemblages. Yet, differential dispersal or colonization ability and historical factors affecting hemiclone distribution may also be important in shaping patterns of clonal coexistence.  相似文献   

11.
The area under the function: an index for selecting desirable genotypes   总被引:1,自引:0,他引:1  
The linear regression approach has been widely used for selecting high-yielding and stable genotypes targeted to several environments. The genotype mean yield and the regression coefficient of a genotype's performance on an index of environmental productivity are the two main stability parameters. Using both can often complicate the breeder's decision when comparing high-yielding, less-stable genotypes with low-yielding, stable genotypes. This study proposes to combine the mean yield and regression coefficient into a unified desirability index (D i). Thus, D i is defined as the area under the linear regression function divided by the difference between the two extreme environmental indexes. D i is equal to the mean of the i th genotype across all environments plus its slope multiplied by the mean of the environmental indexes of the two extreme environments (symmetry). Desirable genotypes are those with a large D i. For symmetric trials the desirability index depends largely on the mean yield of the genotype and for asymmetric trials the slope has an important influence on the desirability index. The use of D i was illustrated by a 20-environments maize yield trial and a 25-environments wheat yield trial. Three maize genotypes out of nine showed values of D i 's that were significantly larger than a hypothetical, stable genotype. These were considered desirable, even though two of them had slopes significantly greater than 1.0. The results obtained from ranking wheat genotypes on mean yield differ from a ranking based on D i .  相似文献   

12.

Background and Aims

Plant genotypic mixtures have the potential to increase yield stability in variable, often unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability remains limited. Field studies are constrained by environmental conditions which cannot be fully controlled and thus reproduced. A suitable model system would allow reproducible experiments on processes operating within crop genetic mixtures.

Methods

Phenotypically dissimilar genotypes of Arabidopsis thaliana were grown in monocultures and mixtures under high levels of competition for abiotic resources. Seed production, flowering time and rosette size were recorded.

Key Results

Mixtures achieved high yield stability across environments through compensatory interactions. Compensation was greatest when plants were under high levels of heat and nutrient stress. Competitive ability and mixture performance were predictable from above-ground phenotypic traits even though below-ground competition appeared to be more intense.

Conclusions

This study indicates that the mixing ability of plant genotypes can be predicted from their phenotypes expressed in a range of relevant environments, and implies that a phenotypic screen of genotypes could improve the selection of suitable components of genotypic mixtures in agriculture intended to be resilient to environmental stress.  相似文献   

13.
Artificial crossing using Rana blairi and R. sphenocephala frogs produced conspecific, interspecific and F1 backcross hybrid genotypes. Although hybrid males used in the crosses were sterile, crosses using hybrid females produced viable larvae. The larval performance of resultant parental and hybrid genotypes was measured in experimental ponds at two densities. Density significantly affected survival, body mass at metamorphosis, larval period length and metamorphosis for all genotypes. Survival was the same among genotypes, but decreased with increasing density. Body mass at metamorphosis was the same among genotypes, but decreased with increasing density. Larval period increased with increasing density. Among genotypes, larvae from the conspecific R. sphenocephala cross had the shortest larval period while larvae from the conspecific R. blairi cross had the longest larval period. All hybrid genotypes had larval periods longer than R. sphenocephala, but shorter than R. blairi. The percentage of individuals metamorphosing was highest for R. sphenocephala ponds and lowest for R. blairi ponds across densities. Ponds with hybrid larvae produced a greater proportion of metamorphs than those with R. blairi larvae, but a smaller proportion than R. sphenocephala ponds. Equivalent or increased relative larval performance of hybrid genotypes under the conditions of our experiment suggests that hybrid genotypes may possess similar or higher fitnesses relative to their progenitors in some environments. Reduced fertility of adult hybrid males is a powerful selective force against natural hybridization. Nevertheless, because of the successful reproduction by female hybrids, natural hybridization has the potential to serve as a mechanism for the introgression of novel genetic variation that can benefit both R. blairi and R. sphenocephala in fluctuating and unpredictable larval environments. Experimental determination of the fitness of parental and hybrid genotypes is crucial for a comprehensive understanding of the effects of hybridization on organismal evolution.  相似文献   

14.
Summary Mixing ability analyses, adapted from combining ability analyses used in plant breeding, were performed on yield and stripe rust (Puccinia striiformis) severity data for two-way mixtures among either four or five club wheat (Triticum aesitivum) cultivars grown in five environments. Initially, two statistics were calculated for each trait: general mixing ability (GMA), the average performance of a cultivar over all of the mixtures, and specific mixing ability (SMA), the deviation of a mixture from the estimated performance of the pair based on its average performance in mixtures. General mixing ability was further divided into two components: genotype performing ability (GPA), the innate ability of a cultivar to yield and resist disease in pure stand, and true general mixing ability (TGMA), the average ability of a cultivar to influence yield and disease when mixed with other cultivars. Significant mean squares for genotypes, GMA, SMA, and TGMA were found for all of the traits in most environments. Examination of TGMA and SMA revealed cultivars and cultivar combinations that were statistically better mixers than the others. Some of the significant effects were probably due to the use of cultivars that differed in height and stripe rust resistance, but for other combinations there was no apparent explanation for enhanced mixing ability.Paper No. 9132 of the Oregon Agricultural Experiment Station. Supported in part by USDA Grants 88-34106-3631 and 88-37151-3662  相似文献   

15.
Reciprocal transplantations of Spartina patens genotypes from adjacent salt marsh, swale, and dune habitats provided evidence for genetic differentiation among subpopulations, due at least in part to contrasting selection regimes. Genet survival in the different habitats was related to the amount of genetic divergence. In the dune habitat, marsh ramets showed the lowest survival, swale ramets showed intermediate survival, and dune ramets showed the highest survival. This relationship was not reciprocal, however. The marsh habitat afforded an environment where survival was maximal for all genotypes. Thus, by comparison, the dune environment appeared to impose a more intense selection pressure, and the swale an intermediate selection pressure on Spartina patens. In each site resident genotypes tended to show greater relative fitness than aliens. This evidence for genetic divergence corroborates that previously reported on morphometric (Silander and Antonovics, 1979) and allozymic traits (Silander, 1984). High levels of phenotypic plasticity may permit greater adaptation to the spatially and temporally heterogeneous environment occupied by S. patens than would genetic variation alone. Dune and swale genets were more phenotypically plastic across traits examined than were marsh genotypes. The higher plasticity in these peripheral subpopulations may confer increased fitness among residents and compensate for observed declines in genetic variation. A slight decrease in genetic variability was evident from marsh to dune subpopulations. However, since the differences in genetic variation among subpopulations were small, and disparities did occur, it is unlikely that evolutionary divergence is retarded primarily by a lack of genetic variability in the characters considered. Evidence is presented to indicate that evolutionary divergence among subpopulations may be retarded by negative or unfavorable correlations among characters being selected simultaneously. These negative correlations may increase extinction probabilities in small peripheral populations, such as those represented by the dune or swale, and are likely to lower fitness. Based on these observations, I hypothesize that further microevolution may be retarded in peripheral dune and swale subpopulations, primarily by unfavorable genetic correlation structures among fitness components or characters under simultaneous selection. Contributing factors may include lowered genetic variance and higher levels of phenotypic plasticity.  相似文献   

16.
基于长期定位监测数据,量化揭示了红锥纯林(Castanopsis hystrix)、10种与30种乡土树种混交林等3种乡土人工林植物群落的生物量、物种多样性、生物热力学健康水平(eco-exergy)和土壤理化性状在种植后13年内的发展动态,并与尾叶桉(Eucalyptus urophylla)纯林,以及自然恢复系统(灌草坡)进行了比较。结果表明:(1)研究期间,5种恢复模式的植物群落生物量均呈现波动上升趋势,但在发展节率上有所差异。13龄时的尾叶桉纯林与两种乡土树种混交林生物量显著高于其各自1龄时的水平,且显著高于自然恢复灌草坡;相较于其他人工林,红锥纯林生物量增长缓慢,但快于灌草坡;(2)5种恢复模式植物群落的物种多样性(物种丰富度、Shannon-Wiener指数、Pielou均匀度指数)在6至13龄间均呈下降趋势,且30种乡土树种混交林下降趋势最为显著。13龄时,两种混交林Shannon-Wiener指数略高于两种纯林,显著高于灌草坡;10种乡土树种混交林的Pielou均匀度指数略高于红锥纯林与30种乡土树种混交林,显著高于尾叶桉纯林与灌草坡。(3)4种人工林的植物群落生物热力学健康水平皆在6至13龄间显著增加;13龄时两种乡土混交林群落生态显著高于两种纯林,两种纯林显著高于灌草坡,且该差异主要源自于乔木层生态的差异。(4)不同植被恢复模式中,10种乡土树种混交林土壤养分的累积效果最佳,13龄时其土壤总氮含量显著高于红锥纯林和自然恢复灌草坡,但与30种乡土树种混交林和尾叶桉纯林无显著差异。(5)冗余分析结果显示,研究期间植被与土壤间的相关关系逐步建立,土壤理化性状对地上植被结构变化的解释度由1龄时的73.3%逐步上升至13龄时的82.0%,但只有土壤有机碳含量在13龄时与地上植被结构的相关性达到显著水平。上述结果表明,乡土种人工林与外来种人工纯林群落结构、生物热力学健康水平、及植被与土壤间关系的发展规律相似,且相对而言,混交林优于纯林,纯林优于自然恢复灌草坡。植被恢复的起始物种丰富度并不是越高越好;发展到13龄时,10种乡土树种混交林在植被结构与土壤改良方面均优于30种乡土树种混交林。植被与土壤间相关关系的建立是一个长期的过程,不同植被恢复模式对土壤理化性状的差异性影响难以在短期内有所显现。  相似文献   

17.
Several aspects of genotype-environment interaction may act to modulate natural selection in populations that encounter variable environments. In this study the norms of reaction (phenotypic responses) of 20 cloned genotypes from two natural populations of the annual plant Polygonum persicaria were determined over a broad range of controlled light environments (8%-100% full sun). These data reveal both the extent of functionally adaptive phenotypic plasticity expressed by individual genotypes, and the patterns of diversity among genotypes for characters relevant to fitness, in response to an environmental factor that is both highly variable within populations and critical to growth and reproduction.  相似文献   

18.
Theoretical models predict that natural selection acting through competitive interactions should lead to increased divergence in resource use and to more equal competitive abilities among different genotypes. The consequent overcompensatory interactions and similar competitive abilities will favor maintenance of genotypic diversity. In field experiments we found that naturally co-occurring genotypes of two perennial grasses, Danthonia spicata and Anthoxanthum odoratum, differed in interspecific competitive performance. The competitive performance of a given genotype often depended on the genotypic identity of the competing species, especially in Danthonia spicata. Both overcompensatory and undercompensatory interactions were found, but neither was prevalent for both species. These data indicate that interactions between species are complex and have an important genetic component. The results from this experiment are compatible with a competitive explanation for the maintenance of genetic variation, but the persistence of weakly competitive genotypes cannot be explained.  相似文献   

19.
Six white clover genotypes and eight grass varieties belonging to four different species were grown both in monoculture and as grass-legume binary mixtures in dense swards for two years under a mowing regime and a management including N fertilization. Dry matter yield and yield-related traits were recorded to investigate some aspects of inter-specific interference in white clover-based mixtures and to define a methodology for selecting genotypes of this clover suited to conditions of association. Clover was at a competitive disadvantage in most mixtures. Differences among grasses for aggressiveness were related more to variety vigour than to species. Clover compatibility proved specific only in relation to grass vigour. Variation among clovers for tolerance to competitive stress involved significant cross-over interactions passing from monoculture to severe stress conditions for clover yield and other traits, and was related positively to stolon density and negatively to yield and leaf gigantism traits recorded in monoculture. Clover selection for high levels of competitive stress seems possible either by genotype assessment in stress conditions or by a combination of high yield and stolon density assessed in monoculture.  相似文献   

20.
Establishing native forbs is crucial for invasive plant management and restoring a desirable plant community. Our objectives were to determine (1) if increasing forb seed density results in increased forb establishment; (2) if a species‐rich mixture of forbs has greater establishment and survivorship than a single species; and (3) if mixtures of forbs are more competitive with Spotted knapweed (Centaurea maculosa) than a forb monoculture. To test our first two objectives, we seeded monocultures of Purple coneflower (Echinacea angustifolia), Arrowleaf balsamroot (Balsamorhiza sagittata), Annual sunflower (Helianthus annuus), Dotted gayfeather (Liatris punctata), Western white yarrow (Achillea millefolium), Sticky geranium (Geranium viscosissimum), as well as a mixture of all forbs. Pots were seeded at 800 or 2,000 seeds/m2 and watered twice or thrice weekly. The highest seed density produced the highest plant density, which averaged 4.35 plants/pot. The density of the mixture was similar to the mean density seen for individual species, and it doubled in response to the highest seed density. To test our third objective, Spotted knapweed and Purple coneflower were arranged in an addition series matrix with a maximum total density of 4,000 seeds/pot. We found that the forb mixture was seven times more competitive with Spotted knapweed than Purple coneflower alone. Using a mixture of forbs rather than a single species enhances forb establishment in various and unpredictable environments because the mixture possesses a variety of traits that may match year–year and site–site conditions. Once established, the mixture may have a greater chance of persisting than a monoculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号