共查询到20条相似文献,搜索用时 0 毫秒
1.
Alan H. Cheetham Jeremy B. C. Jackson Lee-Ann C. Hayek 《Evolution; international journal of organic evolution》1994,48(2):360-375
The roles of natural selection and random genetic change in the punctuated phenotypic evolution of eight Miocene-Pliocene tropical American species of the cheilostome bryozoan Metrarabdotos are analyzed by quantitative genetic methods. Trait heritabilities and genetic covariances reconstructed by partitioning within- and among-colony phenotypic variance are similar to those previously obtained for living species of the cheilostome Stylopoma using breeding data. The hypothesis that differences in skeletal morphology between species of Metrarabdotos are entirely due to mutation and genetic drift cannot be rejected for reasonable rates of mutation maintained for periods brief enough to account for the geologically abrupt appearances of these species in the fossil record. Except for one pair of species, separated by the largest morphologic distance, directional selection acting alone would require unrealistically high rates of selective mortality to be maintained for these periods. Thus, directional selection is not strongly implicated in the divergence of Metrarabdotos species. Within species, rates of net phenotypic change are slow enough to require stabilizing selection, but mask large, relatively rapid fluctuations, all of which, however, can be attributed to chance departures from the mean phenotype by mutation and genetic drift, rather than to tracking environmental fluctuation by directional selection. The results are consistent with genetic models involving shifts between multiple adaptive peaks on which phenotypes remain more or less static through long-term stabilizing selection. Regardless of the degree to which directional selection may be involved in peak shifts, phenotypic differentiation is thus related to processes different than the pervasive stabilizing selection acting within species. 相似文献
2.
3.
Antonia F. Monteiro Paul M. Brakefield Vernon French 《Evolution; international journal of organic evolution》1994,48(4):1147-1157
We have studied interactions between developmental processes and genetic variation for the eyespot color pattern on the adult dorsal forewing of the nymphalid butterfly, Bicyclus anynana. Truncation selection was applied in both an upward and a downward direction to the size of a single eyespot consisting of rings with wing scales of differing color pigments. High heritabilities resulted in rapid responses to selection yielding divergent lines with very large or very small eyespots. Strong correlated responses occurred in most of the other eyespots on each wing surface. The cells at the center of a presumptive eyespot (the “focus”) act in the early pupal stage to establish the adult wing pattern. The developmental fate of the scale cells within an eyespot is specified by the “signaling” properties of the focus and the “response” thresholds of the epidermis. The individual eyespots can be envisaged as developmental homologues. Grafting experiments performed with the eyespot foci of the selected lines showed that additive genetic variance exists for both the response and, in particular, the signaling components of the developmental system. The results are discussed in the context of how constraints on the evolution of this wing pattern may be related to the developmental organization. 相似文献
4.
David O. Conover David A. Van Voorhees Amir Ehtisham 《Evolution; international journal of organic evolution》1992,46(6):1722-1730
What happens when a population with environmental sex determination (ESD) experiences a change to an extreme environment that causes a highly unbalanced sex ratio? Theory predicts that frequency-dependent selection would increase the proportion of the minority sex and decrease the level of ESD in subsequent generations. We empirically modeled this process by maintaining five laboratory populations of a fish with temperature-dependent sex determination (the Atlantic silverside, Menidia menidia) in extreme constant temperature environments that caused highly skewed sex ratios to occur initially. Increases in the minority sex consistently occurred from one generation to the next across all five populations, first establishing and then maintaining a balanced sex ratio until termination of the experiment at 8 to 10 generations. The extent to which the level of ESD changed as balanced sex ratios evolved, however, was not consistent. Two populations that experienced high temperatures each generation displayed a loss of ESD, and in one of these ESD was virtually eliminated. This suggests that temperature-insensitive, sex-determining genes were being selected. In populations maintained in low temperature environments, however, the level of ESD did not decline. Instead, the response of sex ratio to temperature was adjusted upward or downward, perhaps by selection of sex-determining genes sensitive to higher (or lower) temperatures. The two different outcomes at low versus high temperatures occurred independent of the geographic origin of the founding population. Our results demonstrate that ESD is capable of evolving in response to selection. 相似文献
5.
Tia-Lynn Ashman 《Evolution; international journal of organic evolution》1992,46(6):1862-1874
Gynodioecious plant populations contain both hermaphrodite and female individuals. For females to be maintained they must compensate for their loss of reproductive fitness through pollen. Females may achieve compensation by producing more and/or higher quality seeds than hermaphrodites. In this study, I investigated the independent and interactive effects of maternal sexual identity and inbreeding level on fitness of the progeny of hermaphrodites and females of Sidalcea oregana ssp.spicata. Seeds produced by selling hermaphrodites and by outcrossing or sib-crossing hermaphrodites and females, were planted in the field and greenhouse. Maternal-sex effects were substantial at the juvenile stages of the life cycle; seeds of females germinated in higher proportions and produced seedlings that grew significantly faster. Inbreeding effects were manifested primarily at the adult stage of the life cycle. Outcrossed plants were significantly larger and produced more flowers per plant than sib-crossed and selfed plants growing in the greenhouse. Progeny of hermaphrodites and females appeared to respond similarly to sib-matings. The maternal-sex effects observed in Sidalcea may have been related to cytoplasmically inherited factors and could be a driving force in the maintenance of females. Inbreeding depression could play a role in determining the fitness of both sex morphs, if females experience biparental inbreeding in the field. Frequent inbreeding of hermaphrodites may not be necessary to explain the maintenance of gynodioecy in this species. 相似文献
6.
A. H. Bok 《African Journal of Aquatic Science》2013,38(2):97-102
SUMMARY Data on the relative abundance, penetration and breeding biology of the freshwater mullet Mugil cephalus and the flathead mullet Mugil cephalus in the freshwater reaches of some Eastern Cape coastal rivers are described. The differences found between the two species indicate that Myxus capensis is more specialized for a catadromous life history in an unstable riverine environment. Evidence showing the importance of the freshwater phase for the latter species is given and the disastrous effects of the erection of barriers to fish movement are stressed. 相似文献
7.
8.
Alan H. Cheetham Jeremy B. C. Jackson Lee-Ann C. Hayek 《Evolution; international journal of organic evolution》1993,47(5):1526-1538
The possible roles of random genetic change and natural selection in bryozoan speciation were analyzed using quantitative genetic methods on breeding data for traits of skeletal morphology in two closely related species of the cheilostome Stylopoma. The hypothesis that morphologic differences between the species are caused entirely by mutation and genetic drift could not be rejected for reasonable rates of mutation maintained for as few as 103 to 104 generations. Divergence times this short or shorter are consistent with the abrupt appearances of many invertebrate species in the fossil record, commonly followed by millions of years of morphologic stasis. To produce these differences over 103 generations or fewer, directional selection acting alone would require unrealistically high levels of minimum selective mortality throughout divergence. Thus, selection is unnecessary to explain the divergence of these species, except as a means of accelerating the effects of random genetic change on shorter time scales (directional selection), or decelerating them over longer ones (stabilizing selection). These results are consistent with a variety of models of phenotypic evolution involving random shifts between multiple adaptive peaks. Similar results were obtained by substituting trait heritabilities and genetic covariances reconstructed by partitioning within- and among-colony phenotypic variance in place of the values based on breeding data. Quantitative genetic analysis of speciation in fossil bryozoan lineages is thus justified. 相似文献
9.
10.
Kristina Karlsson Green Erik I. Svensson Johannes Bergsten Roger Härdling Bengt Hansson 《Evolution; international journal of organic evolution》2014,68(7):1934-1946
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism. 相似文献
11.
Joel G. Kingsolver Diane C. Wiernasz 《Evolution; international journal of organic evolution》1991,45(6):1480-1492
Do genetic correlations among phenotypic characters reflect developmental organization or functional coadaptation of the characters? We test these hypotheses for the wing melanin pattern of Pieris occidentalis butterflies, by comparing estimated genetic correlations among wing melanin characters with a priori predictions of the developmental organization and the functional (thermoregulatory) organization of melanin pattern. There were significant broad-sense heritabilities and significant genetic correlations for most melanin characters. Matrix correlation tests revealed significant agreement between the observed genetic correlations and both developmental and functional predictions in most cases; this occurred even when the overlap between developmental and functional predictions was eliminated. These results suggest that both developmental organization and functional coadaptation among melanin characters influence the genetic correlation structure of melanin pattern in this species. These results have two important implications for the evolution of melanin pattern in P. occidentalis and other butterflies: 1) most phenotypic variation in pattern may reflect variation among, rather than within, sets of developmentally homologous wing melanin characters; and 2) in a changing selective environment, genetic correlations may retard the disruption of functionally coupled melanin characters, thus affecting the evolutionary response to selection. 相似文献
12.
13.
14.
Mark W. Blows 《Evolution; international journal of organic evolution》1993,47(4):1271-1285
Multiple-peak epistasis is one of the four premises that underlie Wright's shifting-balance theory of evolution. A selection experiment was conducted in an attempt to push different geographic populations to different fitness peaks as a correlated response to selection for an additively controlled character (desiccation resistance). Four populations of Drosophila serrata, sampled from central and marginal areas of its distribution along a 3000-km stretch of Australia's east coast, underwent selection for desiccation resistance for 14 generations. After selection had ceased, control lines from each of the populations were crossed to determine the amount of hybrid breakdown that existed before selection and selected lines were crossed to determine the amount of hybrid breakdown after selection. Hybrid breakdown was measured in three fitness traits: developmental time, viability, and fecundity. When the individual crosses were examined, virtually no evidence was found for hybrid breakdown between these populations. However, the level of hybrid breakdown in development time in the control lines increased as the distance between the populations in the field increased. This relationship was lost in the selected lines. Therefore, selection for desiccation resistance influenced the level of hybrid breakdown in a fitness trait, although selection may need to be maintained for longer than 14 generations if a new relationship between hybrid breakdown and distance is to be formed. 相似文献
15.
Alan H. Cheetham Jeremy B. C. Jackson Lee-Ann C. Hayek 《Evolution; international journal of organic evolution》1995,49(2):290-296
Cheilostome bryozoan species show long-term morphologic stasis, implying stabilizing selection sustained for millions of years, but nevertheless retain significant heritable variation in traits of skeletal morphology. The possible role of within-genotype (within-colony) phenotypic variability in preserving genetic diversity was analyzed using breeding data for two species of Stylopoma from sites along 110 km of the Caribbean coast of Panama. Variation among zooids within colonies accounts for nearly two-thirds of the phenotypic variance on average, increases with environmental heterogeneity, and includes significant genotype-environment interaction. Thus, within-colony variability apparently represents phenotypic plasticity, at least some of which is heritable, rather than random “developmental noise.” Almost all of the among-colonies component of phenotypic variance is accounted for by additive genetic differences in trait means, suggesting that within-colony plasticity includes virtually all of the environmental component of phenotypic variance in these populations of Stylopoma. Thus, heritable within-colony plasticity could play a significant part in maintaining genetic diversity in cheilostomes, but it is also possible that rates of polygenic mutation alone are sufficient to balance the effects of selection. 相似文献
16.
Daniel D. Wiegmann Jeffrey R. Baylis Michael H. Hoff 《Evolution; international journal of organic evolution》1992,46(6):1740-1753
Monogamy is often presumed to constrain mating variance and restrict the action of sexual selection. We examined the reproductive patterns of a monogamous population of smallmouth bass (Micropterus dolomieui), and attempted to identify sources of within-season fitness variation among females and known-age males. Many males did not acquire a nest site, and many territorial males were unsuccessful in acquiring a mate. The likelihood that territorial males mated depended on several aspects of nest sites. Mated males of age three were larger than the average size of age-three males in the population. The mean sizes of age-four and age-five mated males were not different from the average of same-age males in the population. Thus, selection resulting from the acquisition of a mate favored large size among only age-three males. Timing of nest construction and breeding among territorial males was negatively related to male size and did not depend on male age after taking male size into account. Indirect evidence (numbers of eggs deposited in nests) suggests that the timing of spawning among females was also negatively related to female size. Fertility selection favored early reproduction within the season by males of all ages, but large male size was favored among only age-four males. The combined early breeding of fecund females and female mate choice of large males may explain the positive correlation between the size of age-four males and the number of eggs acquired. Despite large differences of female fecundity, however, the variance of relative mate number contributed about two times more than the variance of relative fertility among females to the total variance of relative fitness within each sex. 相似文献
17.
Mark W. Blows Ary A. Hoffmann 《Evolution; international journal of organic evolution》1993,47(4):1255-1270
A selection experiment was used to determine if levels of genetic variance in an ecologically important trait, desiccation resistance, were different in central and marginal populations. Four populations of Drosophila serrata were sampled from central and marginal areas of its distribution, along a 3000-km stretch of Australia's east coast. Rainfall patterns along this stretch of coastline change from a tropical cycle in the north to a temperate cycle in the south. Replicate lines from the four populations underwent selection for desiccation resistance for 14 generations. Realized heritabilities calculated after 10 and 14 generations of selection indicated that the four populations differed significantly in the level of genetic variation for desiccation resistance available to selection. Populations from the more southern marginal areas had lower realized heritabilities than more northern central populations. However, a corresponding increase in mean desiccation resistance toward the margin was not found. A mechanism by which D. serrata seemed to have responded to selection was a reduction in the extent that metabolic rate was increased when flies were exposed to low humidity. This response indicates genetic variation for the control of metabolic rate. In contrast, increased desiccation resistance was not associated with lipid or glycogen levels. Increased resistance to desiccation was accompanied by increased starvation resistance, but radiation resistance was not affected. Selection did not affect the degree that replicate lines or populations had diverged. 相似文献
18.
Pamela Wiener Marcus W. Feldman Sarah P. Otto 《Evolution; international journal of organic evolution》1992,46(3):775-782
It has recently been argued that because the genetic load borne by an asexual species resulting from segregation, relative to a comparable sexual population, is greater than two, sex can overcome its twofold disadvantage and succeed. We evaluate some of the assumptions underlying this argument and discuss alternative assumptions. Further, we simulate the dynamics of competition between sexual and asexual types. We find that for populations of size 100 and 500 the advantages of segregation do not outweigh the cost of producing males. We conclude that, at least for small populations, drift and the cost of sex govern the evolution of sexuality, not selection or segregation. We believe, however, that if sexual and asexual populations were isolated for a sufficiently long period, segregation might impart a fitness advantage upon sexuals that could compensate for the cost of sex and allow sexuals to outcompete asexuals upon their reunion. 相似文献
19.
20.
Kim T. Scribner John C. Avise 《Evolution; international journal of organic evolution》1994,48(1):155-171
The dynamics of mitochondrial and multilocus nuclear genotypic frequencies were monitored for 2 yr in experimental populations established with equal numbers of two poeciliid fishes (Gambusia affinis and Gambusia holbrooki) that hybridize naturally in the southeastern United States. In replicated “small-pool” populations (experiment I), 1018 sampled individuals at six time periods revealed an initial flush of hybridization, followed by a rapid decline in frequencies of G. affinis nuclear and mitochondrial alleles over 64 wk. Decay of gametic and cytonuclear disequilibria differed from expectations under random mating as well as under a model of assortative mating involving empirically estimated mating propensities. In two replicate “large-pond” populations (experiment II), 841 sampled individuals across four reproductive cohorts revealed lower initial frequencies of F1 hybrids than in experiment I, but again G. holbrooki alleles achieved high frequencies over four generations (72 wk). Thus, evolution within experimental Gambusia hybrid populations can be extremely rapid, resulting in consistent loss of G. affinis nuclear and cytoplasmic alleles. Concordance in results between experiments and across genetic markers suggests strong directional selection favoring G. holbrooki genotypes. Results are interpreted in light of previous reports of genotype-specific differences in life-history traits, reproductive ecology, patterns of recruitment, and size-specific mortality, and in the context of patterns of introgression previously studied indirectly from spatial observations on cytonuclear genotypes in natural Gambusia populations. 相似文献