首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burkholderia pseudomallei is a causative agent of melioidosis, a life threatening disease which affects humans and animals in tropical and subtropical areas. This bacterium is known to survive and multiply inside cells such as macrophages. The mechanism of host defense against this bacterium is still unknown. In this study, we demonstrated that B. pseudomallei exhibited unique macrophage activation activity compared with Escherichia coli and Salmonella typhi. The mouse macrophage cell line (RAW 264.7) infected with B. pseudomallei at MOI of 0.1:1, 1:1 and 10:1 did not express a detectable level of inducible nitric oxide synthase (iNOS). Moreover, the B. pseudomallei infected cells released TNF-alpha only when they were infected with high MOI (10:1). Unlike the cells infected with B. pseudomallei, the cells infected with E. coli, and S. typhi expressed iNOS even at MOI of 0.1:1. These infected cells also released a significantly higher level of TNF-alpha at the low MOI ratio. The cells that were preactivated with IFN-gamma prior to being infected with B. pseudomallei exhibited an enhanced production of iNOS and TNF-alpha release. The increased macrophage activation activity in the presence of IFN-gamma also correlated with the restriction of the intracellular bacteria survival. Moreover, IFN-gamma also prevented cell fusion and multinucleated cell formation induced by B. pseudomallei, a phenomenon recently described by our group. Altogether, these results indicate that internalization of B. pseudomallei failed to trigger substantial macrophage activation, a phenomenon which could prolong their survival inside the phagocytic cells and facilitate a direct cell to cell spreading of B. pseudomallei to neighboring cells.  相似文献   

2.
Salmonella typhimurium invades host macrophages and can either induce a rapid cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death requires the Salmonella pathogenicity island (SPI)1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Salmonella that do not cause this rapid cell death and instead reside in the phagocytic vacuole can trigger macrophage death at a later time point. We show here that the human pathogen Salmonella typhi also triggers both rapid, caspase-1-dependent and delayed cell death in human monocytes. The delayed cell death has previously been shown with S. typhimurium to be dependent on SPI2-encoded genes and ompR . Using caspase-1 –/– bone marrow-derived macrophages and isogenic S. typhimurium mutant strains, we show that a large portion of the delayed, SPI2-dependent death is mediated by caspase-1. The two known substrates of activated caspase-1 are the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which are cleaved to produce bioactive cytokines. We show here that IL-1β is released during both SPI1- and SPI2-dependent macrophage killing. Using IL-1β –/– bone marrow-derived macrophages and a neutralizing anti-IL-18 antibody, we show that neither IL-1β nor IL-18 is required for rapid or delayed macrophage death. Thus, both rapid, SPI1-mediated killing and delayed, SPI2-mediated killing require caspase-1 and result in the secretion of IL-1β, which promotes inflammation and may facilitate the spread of Salmonella beyond the gastrointestinal tract in systemic disease.  相似文献   

3.
Shigella-induced macrophage cell death is an important step in the induction of acute inflammatory responses that ultimately lead to bacillary dysentery. Cell death was previously reported to be dependent upon the activation of caspase-1 via interaction with IpaB secreted by intracellular Shigella, but in this study, we show that Shigella infection of macrophages can also induce cell death independent of caspase-1 or IpaB activity. Time-lapse imaging and electron microscopic analyses indicated that caspase-1-dependent and -independent cell death is morphologically indistinguishable and that both resemble necrosis. Analyses of Shigella mutants or Escherichia coli using co-infection with Listeria suggested that a component common to Gram-negative bacteria is involved in inducing caspase-1-independent cell death. Further studies revealed that translocation of bacterial lipid A into the cytosol of macrophages potentially mediates cell death. Notably, cell death induced by cytosolic bacteria was TLR4-independent. These results identify a novel cell death pathway induced by intracellular Gram-negative bacteria that may play a role in microbial-host interactions and inflammatory responses.  相似文献   

4.
Anthrax lethal toxin (LT) is cytotoxic to macrophages from certain inbred mouse strains. The gene controlling macrophage susceptibility to LT is Nalp1b . Nalp1b forms part of the inflammasome, a multiprotein complex involved in caspase-1 activation and release of interleukin (IL)-1β and IL-18. We confirm the role of caspase-1 in LT-mediated death by showing that caspase inhibitors differentially protected cells against LT, with the degree of protection corresponding to each compound's ability to inhibit caspase-1. Caspase-1 activation and cytokine processing and release were late events inhibited by elevated levels of KCl and sucrose, by potassium channel blockers, and by proteasome inhibitors, suggesting that inflammasome formation requires a protein-degradation event and occurs downstream of LT-mediated potassium efflux. In addition, IL-18 and IL-1β release was dependent on cell death, indicating that caspase-1-mediated cytotoxicity is independent of these cytokines. Finally, inducing NALP3-inflammasome formation in LT-resistant macrophages did not sensitize cells to LT, suggesting that general caspase-1 activation cannot account for sensitivity to LT and that a Nalp1b-mediated event is specifically required for death. Our data indicate that inflammasome formation is a contributing, but not initiating, event in LT-mediated cytotoxicity and that earlier LT-mediated events leading to ion fluxes are required for death.  相似文献   

5.
Burkholderia pseudomallei is the causative agent of melioidosis, a tropical infection of humans and other animals. The bacterium is an intracellular pathogen that can escape from endosomes into the host cytoplasm, where it replicates and infects adjacent cells. We investigated the role played by autophagy in the intracellular survival of B. pseudomallei in phagocytic and non-phagocytic cell lines. Autophagy was induced in response to B. pseudomallei invasion of murine macrophage (RAW 264.7) cells and a proportion of the bacteria co-localized with the autophagy effector protein LC3, a marker for autophagosome formation. Pharmacological stimulation of autophagy in RAW 264.7 and murine embryonic fibroblast (MEF) cell lines resulted in increased co-localization of B. pseudomallei with LC3 while basal levels of co-localization could be abrogated using inhibitors of the autophagic pathway. Furthermore, induction of autophagy decreased the intracellular survival of B. pseudomallei in these cell lines, but bacterial survival was not affected in MEF cell lines deficient in autophagy. Treatment of infected macrophages with chloramphenicol increased the proportion of bacteria within autophagosomes indicating that autophagic evasion is an active process relying on bacterial protein synthesis. Consistent with this hypothesis, we identified a B. pseudomallei type III secreted protein, BopA, which plays a role in mediating bacterial evasion of autophagy. We conclude that the autophagic pathway is a component of the innate defense system against invading B. pseudomallei, but which the bacteria can actively evade. However, when autophagy is pharmacologically induced using rapamycin, bacteria are actively sequestered in autophagosomes, ultimately decreasing their survival.  相似文献   

6.
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal infectious disease endemic in tropical regions worldwide, and especially prevalent in southeast Asia and northern Australia. This intracellular pathogen can escape from phagosomes into the host cytoplasm, where it replicates and infects adjacent cells. We previously demonstrated that, in response to B. pseudomallei infection of macrophage cell line RAW 264.7, a subset of bacteria co-localized with the autophagy marker protein, microtubule-associated protein light chain 3 (LC3), implicating autophagy in host cell defence against infection. Recent reports have suggested that LC3 can be recruited to both phagosomes and autophagosomes, thereby raising questions regarding the identity of the LC3-positive compartments in which invading bacteria reside and the mechanism of the autophagic response to B. pseudomallei infection. Electron microscopy analysis of infected cells demonstrated that the invading bacteria were either free in the cytosol, or sequestered in single-membrane phagosomes rather than double-membrane autophagosomes, suggesting that LC3 is recruited to B. pseudomallei-containing phagosomes. Partial or complete loss of function of type III secretion system cluster 3 (TTSS3) in mutants lacking the BopA (effector) or BipD (translocator) proteins respectively, resulted in delayed or no escape from phagosomes. Consistent with these observations, bopA and bipD mutants both showed a higher level of co-localization with LC3 and the lysosomal marker LAMP1, and impaired survival in RAW264.7 cells, suggesting enhanced killing in phagolysosomes. We conclude that LC3 recruitment to phagosomes stimulates killing of B. pseudomallei trapped in phagosomes. Furthermore, BopA plays an important role in efficient escape of B. pseudomallei from phagosomes.  相似文献   

7.
Aeromonas spp. are Gram-negative bacteria that cause serious infectious disease in humans. Such bacteria have been shown to induce apoptosis in infected macrophages, yet the host responses triggered by macrophage death are largely unknown. In this study, we demonstrate that the infection of mouse bone marrow-derived macrophages with Aeromonas veronii biotype sobria triggers activation of caspase-1 with the ensuing release of IL-1β and pyroptosis. Caspase-1 activation in response to A. veronii infection requires the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain and both the NLRP3 and NLRC4 inflammasomes. Furthermore, caspase-1 activation requires aerolysin and a functional type III secretion system in A. veronii. Aerolysin-inducing caspase-1 activation is mediated through the NLRP3 inflammasome, with aerolysin-mediated cell death being largely dependent on the NLRP3 inflammasome. In contrast, the type III secretion system activates both the NLRP3 and NLRC4 inflammasomes. Inflammasome-mediated caspase-1 activation is also involved in host defenses against systemic A. veronii infection in mice. Our results indicated that multiple factors from both the bacteria and the host play a role in eliciting caspase-1 activation during A. veronii infection.  相似文献   

8.
ATP stimulation of cell surface P2X7 receptors results in cytolysis and cell death of macrophages. Activation of this receptor in bacterial lipopolysaccharide (LPS)-activated macrophages or monocytes also stimulates processing and release of the cytokine interleukin-1beta(IL-1beta) through activation of caspase-1. The cytokine interleukin 18 (IL-18) is also cleaved by caspase-1 and shares pro-inflammatory characteristics with IL-1beta. The objective of the present study was to test the hypothesis that IL-1beta, IL-18, and/or caspase-1 activation contribute directly to macrophage cell death induced by LPS and ATP. Macrophages were cultured from normal mice or those in which genes for the P2X7 receptor, IL-1beta, IL-1alpha, IL-18, or caspase-1 had been deleted. Our data confirm the importance of the P2X7 receptor in ATP-stimulated cell death and IL-1beta release from LPS-primed macrophages. We demonstrate that prolonged stimulation with ATP leads to cell death, which is partly dependent on LPS priming and caspase-1, but independent of cytokine processing and release. We also provide evidence that LPS priming of macrophages makes them highly susceptible to the toxic effects of brief exposure to ATP, which leads to rapid cell death by a mechanism that is dependent on caspase-1 but, again, independent of cytokine processing and release.  相似文献   

9.
10.
Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1beta production. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1beta secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1beta, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis.  相似文献   

11.
The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent cell death mechanisms in the pathogenesis of B. pseudomallei infection.  相似文献   

12.
13.
Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1β and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death.  相似文献   

14.
Listeriolysin O (LLO), an hly-encoded cytolysin from Listeria monocytogenes, plays an essential role in the entry of this pathogen into the macrophage cytoplasm and is also a key factor in inducing the production of IFN-gamma during the innate immune stage of infection. In this study, we examined the involvement of LLO in macrophage production of the IFN-gamma-inducing cytokines IL-12 and IL-18. Significant levels of IL-12 and IL-18 were produced by macrophages upon infection with wild-type L. monocytogenes, whereas an LLO-deficient mutant (the L. monocytogenes Deltahly) lacked the ability to induce IL-18 production. Complementation of Deltahly with hly completely restored the ability. However, when Deltahly was complemented with ilo encoding ivanolysin O (ILO), a cytolysin highly homologous with LLO, such a restoration was not observed, although ILO-expressing L. monocytogenes invaded and multiplied in the macrophage cytoplasm similarly as LLO-expressing L. monocytogenes. Induction of IL-18 was diminished when pretreated with a caspase-1 inhibitor or in macrophages from caspase-1-deficient mice, suggesting the activation of caspase-1 as a key event resulting in IL-18 production. Activation of caspase-1 was induced in macrophages infected with LLO-expressing L. monocytogenes but not in those with Deltahly. A complete restoration of such an activity could not be observed even after complementation with the ILO gene. These results show that the LLO molecule is involved in the activation of caspase-1, which is essential for IL-18 production in infected macrophages, and suggest that some sequence unique to LLO is indispensable for some signaling event resulting in the caspase-1 activation induced by L. monocytogenes.  相似文献   

15.
Pseudomonas aeruginosa is a common respiratory pathogen in cystic fibrosis (CF) patients which undergoes adaptations during chronic infection towards reduced virulence, which can facilitate bacterial evasion of killing by host cells. However, inflammatory cytokines are often found to be elevated in CF patients, and it is unknown how chronic P. aeruginosa infection can be paradoxically associated with both diminished virulence in vitro and increased inflammation and disease progression. Thus, we investigated the relationship between the stimulation of inflammatory cell death pathways by CF P. aeruginosa respiratory isolates and the expression of key inflammatory cytokines. We show that early respiratory isolates of P. aeruginosa from CF patients potently induce inflammasome signaling, cell death, and expression of IL-1β by macrophages, yet little expression of other inflammatory cytokines (TNF, IL-6 and IL-8). In contrast, chronic P. aeruginosa isolates induce relatively poor macrophage inflammasome signaling, cell death, and IL-1β expression but paradoxically excessive production of TNF, IL-6 and IL-8 compared to early P. aeruginosa isolates. Using various mutants of P. aeruginosa, we show that the premature cell death of macrophages caused by virulent bacteria compromises their ability to express cytokines. Contrary to the belief that chronic P. aeruginosa isolates are less pathogenic, we reveal that infections with chronic P. aeruginosa isolates result in increased cytokine induction due to their failure to induce immune cell death, which results in a relatively intense inflammation compared with early isolates.Subject terms: Cell death, Immune cell death  相似文献   

16.
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1β, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1β processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1β release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1β release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1β response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1β processing and release.  相似文献   

17.
The potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1beta in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.  相似文献   

18.
Caspase-1, formerly known as interleukin (IL)-1-converting enzyme is best established as the protease responsible for the processing of the key pro-inflammatory cytokine IL-1β from an inactive precursor to an active, secreted molecule. Thus, caspase-1 is regarded as a key mediator of inflammatory processes, and has become synonymous with inflammation. In addition to the processing of IL-1β, caspase-1 also executes a rapid programme of cell death, termed pyroptosis, in macrophages in response to intracellular bacteria. Pyroptosis is also regarded as a host response to remove the niche of the bacteria and to hasten their demise. These processes are generally accepted as the main roles of caspase-1. However, there is also a wealth of literature supporting a direct role for caspase-1 in non-infectious cell death processes. This is true in mammals, but also in non-mammalian vertebrates where caspase-1-dependent processing of IL-1β is absent because of the lack of appropriate caspase-1 cleavage sites. This literature is most prevalent in the brain where caspase-1 may directly regulate neuronal cell death in response to diverse insults. We attempt here to summarise the evidence for caspase-1 as a cell death enzyme and propose that, in addition to the processing of IL-1β, caspase-1 has an important and a conserved role as a cell death protease.  相似文献   

19.
Zheng Y  Lilo S  Mena P  Bliska JB 《PloS one》2012,7(4):e36019
Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJ(KIM)) strains have high cytotoxic activity. In addition, YopJ(KIM)-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJ(KIM)-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJ(KIM)-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJ(KIM). Wild-type and congenic caspase 1 knockout C57BL/6 mice were equally susceptible to lethal infection with Y. pseudotuberculosis ectopically expressing YopP. These data suggest that YopJ-induced caspase-1 activation in Yersinia-infected macrophages is a downstream consequence of necrotic cell death and is dispensable for innate host resistance to a strain with enhanced cytotoxicity.  相似文献   

20.
Inhalation of crystalline silica (CS) particles increases the risk of pulmonary tuberculosis; however, the precise mechanism through which CS exposure facilitates Mycobacterium tuberculosis (Mtb) infection is unclear. We speculate that macrophage exposure to CS deregulates the cell death pathways that could explain, at least in part, the association observed between exposure to CS and pulmonary tuberculosis. We therefore established an in vitro model in which macrophages were exposed to CS and then infected with Mtb. Expression of surface markers was analyzed by flow cytometry, JNK1/2, ASK1, caspase 9, P-p38, Bcl-2 and Mcl-1 were analyzed by Western blot, and cytokines by ELISA. Our results show that exposure to CS limits macrophage ability to control Mtb growth. Moreover, this exposure reduced the expression of TLR2, Bcl-2 and Mcl-1, but increased that of JNK1 and ASK1 molecules in the macrophages. Finally, when the pre-exposed macrophages were infected with Mtb, the concentrations of TNFα, IL-1β and caspase-9 expression increased. This pro-inflammatory profile of the macrophage unbalanced the apoptosis/necrosis pathway. Taken together, these data suggest that macrophages exposed to CS are sensitized to cell death by MAPK kinase-dependent signaling pathway. Secretion of TNF-α and IL-1β by Mtb-infected macrophages promotes necrosis, and this deregulation of cell death pathways may favor the release of viable bacilli, thus leading to the progression of tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号