首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Various cellular signals initiate calcium entry into cells, and there is evidence that lipid rafts and caveolae may concentrate proteins that regulate transmembrane calcium fluxes. Here, using mice deficient in caveolin-1 (Cav-1) and Cav-1 knock-out reconstituted with endothelium-specific Cav-1, we show that Cav-1 is essential for calcium entry in endothelial cells and governs the localization and protein-protein interactions between transient receptor channels C4 and C1. Thus, Cav-1 is required for calcium entry in vascular endothelial cells and perhaps other specialized cell types containing caveolae.  相似文献   

4.
Autophagy as a natural part of cellular homeostasis usually takes place unnoticed by neighboring cells. However, its co-occurrence with cell death may contribute to the clearance of these dying cells by recruited phagocytes. Autophagy associated with programmed cell death has recently been reported to be essential for presentation of phoshatidylserine (PS) on the cell surface (Qu et al. 2007) that has a key role in the clearance of apoptotic cells. Recently, we have demonstrated that upon triggering cell death by autophagy in MCF-7 cells, the corpses were efficiently phagocytosed by both human macrophages and non-dying MCF-7 cells. Death as well as engulfment could be prevented by inhibiting autophagy. Based on our data, two molecular mechanisms have been proposed for the uptake of cells which die through autophagy: a PS-dependent pathway which was exclusively used by the living MCF-7 cells acting as non-professional phagocytes, and a PS-independent uptake mechanism that was active in macrophages acting as professional phagocytes. Several lines of evidence suggest that macrophages utilize calreticulin-mediated recognition, tethering, tickling and engulfment processes. Phagocytic uptake of cells dying through autophagy by macrophages leads to a pro-inflammatory response characterized by the induction and secretion of IL-6, TNFalpha, IL-8 and IL-10.  相似文献   

5.
Variations in the matrix metalloproteinase (MMP)-9 gene are related to the presence and severity of atherosclerosis. The aim of this study was to determine the signaling pathways of MMP-9 in endothelial cells subjected to low fluid shear stress. We found that low fluid shear stress significantly increased MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and phosphorylation of MAPK in cultured human umbilical vein endothelial cells (HUVECs). Inhibition of NF-kappaB resulted in remarkable downregulation of stress-induced MMP-9 expression. Pretreatment of HUVECs with inhibitors of p38 mitogen-activating protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) also led to significant suppression of stress-induced MMP-9 expression and NF-kappaB DNA-binding activity. Similarly, addition of integrins inhibitor to HUVECs suppressed the stress-induced MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and the phosphorylation of p38 MAPK, ERK1/2. Our findings demonstrated that the shear stress-induced MMP-9 expression involved integrins-p38 MAPK or ERK1/2-NF-kappaB signaling pathways.  相似文献   

6.
7.
8.
9.
To study the effects of hyperoxia on protein synthesis in primary cultures of porcine aortic endothelial cells, we exposed confluent cells to different O2 concentrations for various durations. Exposure to 95% O2 for 5 days resulted in a 71% inhibition of [3H]phenylalanine incorporation into total proteins. When compared with control cells, we observed no changes in 1) the pool size of free cytoplasmic phenylalanine and of phenylalanine attached to transfer RNA (tRNA), 2) the rate of protein degradation, and 3) the rate of charging of tRNA with phenylalanine. We found that under hyperoxic conditions 1) the incorporation of [3H]-uridine into total and polyadenylated RNA was increased, 2) the efficiency of extracted messenger RNA to direct protein synthesis in a reticulocyte lysate was maintained, 3) the proportion of polymeric to monomeric ribosomes was slightly increased, and 4) the rate of elongation, as measured by the ribosomal transit time, was decreased. Thus the reduction in protein synthesis in hyperoxic cells appears to result primarily from defects at the translational level in polypeptide chain elongation.  相似文献   

10.
11.
12.
Somatic cell hybrids formed by fusing hepatoma cells with fibroblasts generally fail to express liver functions, a phenomenon termed extinction. Previous studies demonstrated that extinction of the genes encoding tyrosine aminotransferase, phosphoenolpyruvate carboxykinase, and argininosuccinate synthetase is mediated by a specific genetic locus (TSE1) that maps to mouse chromosome 11 and human chromosome 17. In this report, we show that full repression of these genes requires a genetic factor in addition to TSE1. This conclusion is based on the observation that residual gene activity was apparent in monochromosomal hybrids retaining human TSE1 but not in complex hybrids retaining many fibroblast chromosomes. Furthermore, TSE1-repressed genes were hormone inducible, whereas fully extinguished genes were not. Analysis of hybrid segregants indicated that genetic loci required for the complete repression phenotype were distinct from TSE1.  相似文献   

13.
14.
15.
16.
17.
18.
Sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which has potent pro-inflammatory and pro-angiogenic effects. We investigated the effects of raised SK1 levels on endothelial cell function and the possibility that this signaling pathway is activated in rheumatoid arthritis. Human umbilical vein endothelial cells with 3- to 5-fold SK1 (ECSK) overexpression were generated by adenoviral and retroviralmediated gene delivery. The activation state of these cells and their ability to undergo angiogenesis was determined. S1P was measured in synovial fluid from patients with RA and OA. ECSK showed an enhanced migratory capacity and a stimulated rate of capillary tube formation. The cells showed constitutive activation as evidenced by the induction of basal VCAM-1 expression, and further showed a more augmented VCAM-1 and E selectin response to TNF compared with empty vector control cells (ECEV). These changes had functional consequences in terms of enhanced neutrophil binding in the basal and TNFstimulated states in ECSK. By contrast, over-expression of a dominant-negative SK inhibited the TNF-induced VCAM-1 and E selectin and inhibited PMN adhesion, confirming that the observed effects were specifically mediated by SK. The synovial fluid levels of S1P were significantly higher in patients with RA than in those with OA. Small chronic increases in SK1 activity in the endothelial cells enhance the ability of the cells to support inflammation and undergo angiogenesis, and sensitize the cells to inflammatory cytokines. The SK1 signaling pathway is activated in RA, suggesting that manipulation of SK1 activity in diseases of aberrant inflammation and angiogenesis may be beneficial.  相似文献   

19.
Liu D  Dillon JS 《Steroids》2004,69(4):279-289
Dehydroepiandrosterone (DHEA) improves vascular function, but the mechanism of this effect is unclear. Since nitric oxide (NO) regulates vascular function, we hypothesized that DHEA affects the vasculature by increasing endothelial NO production. Physiological concentrations of DHEA stimulated NO release from intact bovine aortic endothelial cells (BAEC) within 5min. This effect was mediated by activation of endothelial nitric oxide synthase (eNOS) in BAEC and human umbilical vein endothelial cells (HUVEC). Dehydroepiandrosterone increased cyclic GMP (cGMP) levels in BAEC, consistent with its effect on NO production. Albumin-conjugated DHEA also stimulated NO release, suggesting that DHEA stimulates eNOS by a plasma membrane-initiated signal. Tamoxifen blocked estrogen-stimulated NO release from BAEC, but did not inhibit the DHEA effect. Pertussis toxin abolished the acute effect of DHEA on NO release. Dehydroepiandrosterone had no effect on intracellular calcium fluxes. However, inhibition of tyrosine kinases or the mitogen-activated protein (MAP) kinase kinase (MEK) blocked NO release and cGMP production in response to DHEA. These findings demonstrate that physiological concentrations of DHEA acutely increase NO release from intact vascular endothelial cells, by a plasma membrane-initiated mechanism. This action of DHEA is mediated by a steroid-specific, G-protein coupled receptor, which activates eNOS in both bovine and human cells. The release of NO is independent of intracellular calcium mobilization, but depends on tyrosine- and MAP kinases. This cellular mechanism may underlie some of the cardiovascular protective effects proposed for DHEA.  相似文献   

20.
《Cell reports》2023,42(7):112751
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号