首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning and Characterization of Adeno-Associated Virus Type 5   总被引:20,自引:8,他引:12       下载免费PDF全文
Adeno-associated virus type 5 (AAV5) is distinct from other dependovirus serotypes based on DNA hybridization and serological data. To better understand the biology of AAV5, we have cloned and sequenced its genome and generated recombinant AAV5 particles. The single-stranded DNA genome is similar in length and genetic organization to that of AAV2. The rep gene of AAV5 is 67% homologous to AAV2, with the majority of the changes occurring in the carboxyl and amino termini. This homology is much less than that observed with other reported AAV serotypes. The inverted terminal repeats (ITRs) are also unique compared to those of the other AAV serotypes. While the characteristic AAV hairpin structure and the Rep DNA binding site are retained, the consensus terminal resolution site is absent. These differences in the Rep proteins and the ITRs result in a lack of cross-complementation between AAV2 and AAV5 as measured by the production of recombinant AAV particles. Alignment of the cap open reading frame with that of the other AAV serotypes identifies both conserved and variable regions which could affect tissue tropism and particle stability. Comparison of transduction efficiencies in a variety of cells lines and a lack of inhibition by soluble heparin indicate that AAV5 may utilize a distinct mechanism of uptake compared to AAV2.  相似文献   

2.
All currently identified primary receptors of adeno-associated virus (AAV) are glycans. Depending on the AAV serotype, these carbohydrates range from heparan sulfate proteoglycans (HSPG), through glycans with terminal α2-3 or α2-6 sialic acids, to terminal galactose moieties. Receptor identification has largely relied on binding to natural compounds, defined glycan-presenting cell lines, or enzyme-mediated glycan modifications. Here, we describe a comparative binding analysis of highly purified, fluorescent-dye-labeled AAV vectors of various serotypes on arrays displaying over 600 different glycans and on a specialized array with natural and synthetic heparins. Few glycans bind AAV specifically in a serotype-dependent manner. Differential glycan binding was detected for the described sialic acid-binding AAV serotypes 1, 6, 5, and 4. The natural heparin binding serotypes AAV2, -3, -6, and -13 displayed differential binding to selected synthetic heparins. AAV7, -8, -rh.10, and -12 did not bind to any of the glycans present on the arrays. For discrimination of AAV serotypes 1 to 6 and 13, minimal binding moieties are identified. This is the first study to differentiate the natural mixed heparin binding AAV serotypes 2, 3, 6, and 13 by differential binding to specific synthetic heparins. Also, sialic acid binding AAVs display differential glycan binding specificities. The findings are relevant for further dissection of AAV host cell interaction. Moreover, the definition of single AAV-discriminating glycan binders opens the possibility for glycan microarray-based discrimination of AAV serotypes in gene therapy.  相似文献   

3.
4.
Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) in trans, and inverted terminal repeat (ITR) sequences in cis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome with an AAV2 ITR. In vitro replication assays indicated that the block occurs at the level of replication instead of at viral assembly. AAV2 and AAV5 Rep binding activities demonstrate similar affinities for either an AAV2 or AAV5 ITR; however, comparison of terminal resolution site (TRS) endonuclease activities showed a difference in specificity for the two DNA sequences. AAV2 Rep78 cleaved only a type 2 ITR DNA sequence, and AAV5 Rep78 cleaved only a type 5 probe efficiently. Mapping of the AAV5 ITR TRS identified a distinct cleavage site (AGTG TGGC) which is absent from the ITRs of other AAV serotypes. Comparison of the TRSs in the AAV2 ITR, the AAV5 ITR, and the AAV chromosome 19 integration locus identified some conserved nucleotides downstream of the cleavage site but little homology upstream.  相似文献   

5.
Capsids of adenovirus-associated virus (AAV) are known to contain three major structural proteins (A, B, and C). We have further resolved distinct subspecies of two of the major AAV proteins (two forms of protein A and four forms of protein C) which were found in both AAV1 and AAV2 serotypes. All subspecies were accurately synthesized in a cell-free translation system programmed with RNA isolated from infected cells. Analysis of virion proteins from the autonomous parvovirus H1 did not reveal a comparable array of subspecies of its major components. Staphylococcal V8 protease digestion of C proteins from AAV1 and AAV2 yielded very different electrophoretic patterns, indicating a considerable difference between the C proteins of these two serotypes, despite a high degree of genomic homology and an overall similarity in the number and relative proportions of analogous capsid proteins. On the other hand, staphylococcal V8 protease digestion of isolated proteins A, B, and C of AAV2 showed an extensive overlap among these proteins, possibly equivalent to all of protein C. In conjunction with other data, these findings suggest that proteins A, B, and C arise from different in-frame initiation sites contained in mRNA sequences that are transcribed from the right half of the AAV genome. The heterogeneity of subspecies may be explained by a partial read through of several tandem termination codons near the 3' end of AAV mRNA.  相似文献   

6.
7.
Adeno-associated virus type 2 (AAV2) capsid assembly requires the expression of a virally encoded assembly-activating protein (AAP). By providing AAP together with the capsid protein VP3, capsids are formed that are composed of VP3 only. Electron cryomicroscopy analysis of assembled VP3-only capsids revealed all characteristics of the wild-type AAV2 capsids. However, in contrast to capsids assembled from VP1, VP2, and VP3, the pores of VP3-only capsids were more restricted at the inside of the 5-fold symmetry axes, and globules could not be detected below the 2-fold symmetry axes. By comparing the capsid assembly of several AAV serotypes with AAP protein from AAV2 (AAP-2), we show that AAP-2 is able to efficiently stimulate capsid formation of VP3 derived from several serotypes, as demonstrated for AAV1, AAV2, AAV8, and AAV9. Capsid formation, by coexpressing AAV1-, AAV2-, or AAV5-VP3 with AAP-1, AAP-2, or AAP-5 revealed the ability of AAP-1 and AAP-2 to complement each other in AAV1 and AAV2 assembly, whereas for AAV5 assembly more specific conditions are required. Sequence alignment of predicted AAP proteins from the known AAV serotypes indicates a high degree of homology of all serotypes to AAP-2 with some divergence for AAP-4, AAP-5, AAP-11, and AAP-12. Immunolocalization of assembled capsids from different serotypes confirmed the preferred nucleolar localization of capsids, as observed for AAV2; however, AAV8 and AAV9 capsids could also be detected throughout the nucleus. Taken together, the data show that AAV capsid assembly of different AAV serotypes also requires the assistance of AAP proteins.  相似文献   

8.
Genome localization of adeno-associated virus RNA.   总被引:7,自引:6,他引:1       下载免费PDF全文
  相似文献   

9.
Although adeno-associated virus (AAV) infection is common in humans, the biology of natural infection is poorly understood. Since it is likely that many primary AAV infections occur during childhood, we set out to characterize the frequency and complexity of circulating AAV isolates in fresh and archived frozen human pediatric tissues. Total cellular DNA was isolated from 175 tissue samples including freshly collected tonsils (n = 101) and archived frozen samples representing spleen (n = 21), lung (n = 16), muscle (n = 15), liver (n = 19), and heart (n = 3). Samples were screened for the presence of AAV and adenovirus sequences by PCR using degenerate primers. AAV DNA was detected in 7 of 101 (7%) tonsil samples and two of 74 other tissues (one spleen and one lung). Adenovirus sequences were identified in 19 of 101 tonsils (19%), but not in any other tissues. Complete capsid gene sequences were recovered from all nine AAV-positive tissues. Sequence analyses showed that eight of the capsid sequences were AAV2-like (approximately 98% amino acid identity), while the single spleen isolate was intermediate between serotypes 2 and 3. Comparison to the available AAV2 crystal structure revealed that the majority of the amino acid substitutions mapped to surface-exposed hypervariable domains. To further characterize the AAV capsid structure in these samples, we used a novel linear rolling-circle amplification method to amplify episomal AAV DNA and isolate infectious molecular clones from several human tissues. Serotype 2-like viruses were generated from these DNA clones and interestingly, failed to bind to a heparin sulfate column. Inspection of the capsid sequence from these two clones (and the other six AAV2-like isolates) revealed that they lacked arginine residues at positions 585 and 588 of the capsid protein, which are thought to be essential for interaction with the heparin sulfate proteoglycan coreceptor. These data provide a framework with which to explore wild-type AAV persistence in vivo and provide additional tools to further define the biodistribution and form of AAV in human tissues.  相似文献   

10.
Recombinant adeno-associated virus (rAAV) vectors are a promising tool for gene therapy. When multiple serotypes are handled in the same laboratory during the AAV vector production, it is essential to have means to identify the serotype in a sample and to confirm the absence of cross-contaminating AAV sequences in plasmid stocks as well as end products. Here, we describe the development of a Multiplex AAV Genotyping (MAG) assay to type sensitively and specifically DNA from AAV serotypes 1-12 and to detect AAV2 serotype DNA sequences encoding peptide insertions used to modify tissue tropism. MAG is based on multiplex PCR using type-specific primers and subsequent multiplex hybridization by Luminex. The assay is highly specific, and can easily identify plasmid cross-contaminations. Using 10-fold dilution series, the detection limit was below 10 AAV genomes per PCR. In artificial cross-contamination experiments with a 1,000-fold excess of one AAV serotype versus another one, the contaminating type could be still detected with 10-100 AAV genomes. In a first application, MAG identified successfully cross-contaminated AAV plasmid stocks. In conclusion, MAG is a powerful high-throughput tool in assessing the purity and identity of AAV DNA plasmids and other starting materials used for AAV vector production.  相似文献   

11.
Adeno-associated viral (AAV) vectors represent some of the most potent and promising vehicles for therapeutic human gene transfer due to a unique combination of beneficial properties1. These include the apathogenicity of the underlying wildtype viruses and the highly advanced methodologies for production of high-titer, high-purity and clinical-grade recombinant vectors2. A further particular advantage of the AAV system over other viruses is the availability of a wealth of naturally occurring serotypes which differ in essential properties yet can all be easily engineered as vectors using a common protocol1,2. Moreover, a number of groups including our own have recently devised strategies to use these natural viruses as templates for the creation of synthetic vectors which either combine the assets of multiple input serotypes, or which enhance the properties of a single isolate. The respective technologies to achieve these goals are either DNA family shuffling3, i.e. fragmentation of various AAV capsid genes followed by their re-assembly based on partial homologies (typically >80% for most AAV serotypes), or peptide display4,5, i.e. insertion of usually seven amino acids into an exposed loop of the viral capsid where the peptide ideally mediates re-targeting to a desired cell type. For maximum success, both methods are applied in a high-throughput fashion whereby the protocols are up-scaled to yield libraries of around one million distinct capsid variants. Each clone is then comprised of a unique combination of numerous parental viruses (DNA shuffling approach) or contains a distinctive peptide within the same viral backbone (peptide display approach). The subsequent final step is iterative selection of such a library on target cells in order to enrich for individual capsids fulfilling most or ideally all requirements of the selection process. The latter preferably combines positive pressure, such as growth on a certain cell type of interest, with negative selection, for instance elimination of all capsids reacting with anti-AAV antibodies. This combination increases chances that synthetic capsids surviving the selection match the needs of the given application in a manner that would probably not have been found in any naturally occurring AAV isolate. Here, we focus on the DNA family shuffling method as the theoretically and experimentally more challenging of the two technologies. We describe and demonstrate all essential steps for the generation and selection of shuffled AAV libraries (Fig. 1), and then discuss the pitfalls and critical aspects of the protocols that one needs to be aware of in order to succeed with molecular AAV evolution.  相似文献   

12.
BACKGROUND: Adeno-associated viral (AAV) vectors are potent delivery vehicles for gene transfer strategies directed at the central nervous system (CNS), muscle and liver. However, comparatively few studies have described AAV-mediated gene transfer to tumor tissues. We have previously demonstrated that while AAV2 and Adenoviral (Ad) 5 vectors have similar broad host ranges in tumor-derived cell lines, AAV2 was able to penetrate human glioblastoma biopsy spheroids and xenografts more efficiently than Ad 5 vectors. These results suggested that AAV vectors could be suitable for therapeutic gene delivery to solid tumor tissue. In the present work, the transduction efficacy of AAV serotypes 4 and 5 were compared to AAV2, both in vitro and in intracranial GBM xenografts derived from patient biopsies implanted into nude rats. METHODS: AAV vector serotypes 2, 4, and 5 containing either the green fluorescent protein (GFP) or the bacterial beta-galactosidase (lacZ) reporter gene were added to five different human glioma cell lines, to multicellular spheroids generated from glioblastoma patient biopsies, and to spheroids xenografted intracranially in nude rats. Transduction efficiency was assessed by fluorescence imaging, histochemistry, immunohistochemistry and flow cytometry. RESULTS: While all three AAV serotypes were able to transduce the glioma cell lines when added individually or when they were administered in concert, AAV2 transduced the glioma cells most effectively compared to AAV4 or AAV5. Upon infecting glioblastoma spheroids in vitro, all three AAV serotypes efficiently transduced cells located at the surface as well as within deeper layers of the spheroids. In addition, similarly to what was observed for AAV2 16, both AAV4 and AAV5 were able to transduce human glioblastoma xenografts implanted intracranially. CONCLUSIONS: In addition to the widely used AAV2 serotype, AAV4 and AAV5 serotypes may also be used to transduce biologically diverse glioma cell lines. They also penetrate and transduce solid human tumor tissue derived from patient biopsies. Therefore, the data presented here provide a proof of principle for developing AAV4 and AAV5 as treatment vehicles for human malignant gliomas.  相似文献   

13.
In addition to adenoviruses, which are capable of completely helping adenovirus-associated virus (AAV) multiplication, only herpesviruses are known to provide any AAV helper activity, but this activity has been thought to be partial (i.e., AAV DNA, RNA, and protein syntheses are induced, but infectious particles are not assembled). In this study, however, we show that herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are in fact complete AAV helpers and that AAV type 2 (AAV2) infectivity yields can approach those obtained when coinfections are carried out with a helper adenovirus. AAV helper activity was demonstrated in KB cells with two HSV-1 strains (11124 and 17MP) and an HSV-2 strain (HG52). Each herpesvirus supported AAV2 multiplication with comparable efficiency. AAV2 multiplication was similarly efficient in HSV-1 coinfections of HeLa cells, whereas lower yields were obtained in HEp-2 and primary human embryonic kidney cells. HSV-1 also supported AAV1 multiplication in HeLa cells but, at corresponding multiplicities of infection, AAV1 grew less efficiently than AAV2. Comparisons of the time courses of AAV2 DNA, RNA, and protein syntheses after coinfection with either adenovirus type 5 or HSV-1 revealed that, in each case, the onset of synthesis and attainment of maximal synthesis rate occurred earlier in coinfections with HSV-1. These findings demonstrate the linkage of AAV macromolecular synthesis to an event(s) in the helper virus cycle. Aside from this temporal association, helper-related differences in AAV macromolecular synthesis were not apparent.  相似文献   

14.
A rapid method of ultracentrifugation pelleting of avian adenovirus (AAV) from small volume of chloroform treated infected cell culture fluid or allantoic fluid was adapted for isolation of adenoviral DNA. The viral DNA extracted from semipurified viruses was found to be intact on agarose gel and pure enough (A260/280 = 1.85-1.92) for restriction enzyme analysis. Restriction endonuclease analysis of Indian strain of AAV serotype 1, AAV serotype 4 (group I AAVs) and egg drop syndrome-76 (EDS-76) virus genomes (group III AAV) with Hind III enzyme differentiated these viruses. The AAV serotype 1 and serotype 4 strain exhibited identical Hind III profile to European viral strains belonging to same serotypes however, the EDS-76 virus gave similar but not identical profile. The calculated genomic lengths for AAV serotype 1 and EDS-76 virus were approximately found to be 33.9 and 44.4 Kb, respectively.  相似文献   

15.
Recombinant adeno-associated viruses (AAVs) are promising vectors in the field of gene therapy. Different AAV serotypes display distinct tissue tropism, believed to be related to the distribution of their receptors on target cells. Of the 11 well-characterized AAV serotypes, heparan sulfate proteoglycan and sialic acid have been suggested to be the attachment receptors for AAV type 2 and types 4 and 5, respectively. In this report, we identify the receptor for the two closely related serotypes, AAV1 and AAV6. First, we demonstrate using coinfection experiments and luciferase reporter analysis that AAV1 and AAV6 compete for similar receptors. Unlike heparin sulfate, enzymatic or genetic removal of sialic acid markedly reduced AAV1 and AAV6 binding and transduction. Further analysis using lectin staining and lectin competition assays identified that AAV1 and AAV6 use either alpha2,3-linked or alpha2,6-linked sialic acid when transducing numerous cell types (HepG2, Pro-5, and Cos-7). Treatment of cells with proteinase K but not glycolipid inhibitor reduced AAV1 and AAV6 infection, supporting the hypothesis that the sialic acid that facilitates infection is associated with glycoproteins rather than glycolipids. In addition, we determined by inhibitor (N-benzyl GalNAc)- and cell line-specific (Lec-1) studies that AAV1 and AAV6 require N-linked and not O-linked sialic acid. Furthermore, a resialylation experiment on a deficient Lec-2 cell line confirmed a 2,3 and 2,6 N-linked sialic acid requirement, while studies of mucin with O-linked sialic acid showed no inhibition effect for AAV1 and AAV6 transduction on Cos-7 cells. Finally, using a glycan array binding assay we determined that AAV1 efficiently binds to NeuAcalpha2-3GalNAcbeta1-4GlcNAc, as well as two glycoproteins with alpha2,3 and alpha2,6 N-linked sialic acids. Taken together, competition, genetic, inhibitor, enzymatic reconstitution, and glycan array experiments support alpha2,3 and alpha2,6 sialic acids that are present on N-linked glycoproteins as primary receptors for efficient AAV1 and AAV6 viral infection.  相似文献   

16.
A major impediment to the use of adeno-associated virus (AAV)-mediated gene delivery to muscle in clinical applications is the pre-existing immune responses against the vector. Pre-existing humoral response to different AAV serotypes is now well documented. In contrast, cellular responses to AAV capsid have not been analyzed in a systematic manner, despite the risk of T cell reactivation upon gene transfer. AAV1 has been widely used in humans to target muscle. In this study, we analyzed PBMCs and sera of healthy donors for the presence of AAV1 capsid-specific T cell responses and AAV1 neutralizing factors. Approximately 30% of donors presented AAV1 capsid-specific T cells, mainly effector memory CD8(+) cells. IFN-γ-producing cells were also observed among effector memory CD4(+) cells for two of these donors. Moreover, to our knowledge, this study shows for the first time on a large cohort that there was no correlation between AAV1-specific T cell and humoral responses. Indeed, most donors presenting specific Ig and neutralizing factors were negative for cellular response (and vice versa). These new data raise the question of prescreening patients not only for the humoral response, but also for the cellular response. Clearly, a better understanding of the natural immunology of AAV serotypes will allow us to improve AAV gene therapy and make it an efficient treatment for genetic disease.  相似文献   

17.
The adeno-associated viruses (AAVs) can package and deliver foreign DNA into cells for corrective gene delivery applications. The AAV serotypes have distinct cell binding, transduction, and antigenic characteristics that have been shown to be dictated by the capsid viral protein (VP) sequence. To understand the contribution of capsid structure to these properties, we have determined the crystal structure of AAV serotype 4 (AAV4), one of the most diverse serotypes with respect to capsid protein sequence and antigenic reactivity. Structural comparison of AAV4 to AAV2 shows conservation of the core beta strands (betaB to betaI) and helical (alphaA) secondary structure elements, which also exist in all other known parvovirus structures. However, surface loop variations (I to IX), some containing compensating structural insertions and deletions in adjacent regions, result in local topological differences on the capsid surface. These include AAV4 having a deeper twofold depression, wider and rounder protrusions surrounding the threefold axes, and a different topology at the top of the fivefold channel from that of AAV2. Also, the previously observed "valleys" between the threefold protrusions, containing AAV2's heparin binding residues, are narrower in AAV4. The observed differences in loop topologies at subunit interfaces are consistent with the inability of AAV2 and AAV4 VPs to combine for mosaic capsid formation in efforts to engineer novel tropisms. Significantly, all of the surface loop variations are associated with amino acids reported to affect receptor recognition, transduction, and anticapsid antibody reactivity for AAV2. This observation suggests that these capsid regions may also play similar roles in the other AAV serotypes.  相似文献   

18.
ABSTRACT: BACKGROUND: The budding yeast Saccharomyces cerevisiae supports replication of many different RNA or DNA viruses (e.g. Tombusviruses or Papillomaviruses) and has provided means for up-scalable, cost- and time-effective production of various virus-like particles (e.g. Human Parvovirus B19 or Rotavirus). We have recently demonstrated that S. cerevisiae can form single stranded DNA AAV2 genomes starting from a circular plasmid. In this work, we have investigated the possibility to assemble AAV capsids in yeast. RESULTS: To do this, at least two out of three AAV structural proteins, VP1 and VP3, have to be simultaneously expressed in yeast cells and their intracellular stoichiometry has to resemble the one found in the particles derived from mammalian or insect cells. This was achieved by stable co-transformation of yeast cells with two plasmids, one expressing VP3 from its natural p40 promoter and the other one primarily expressing VP1 from a modified AAV2 Cap gene under the control of the inducible yeast promoter Gal1. Among various induction strategies we tested, the best one to yield the appropriate VP1:VP3 ratio was 4.5 hour induction in the medium containing 0.5 % glucose and 5 % galactose. Following such induction, AAV virus like particles (VLPs) were isolated from yeast by two step ultracentrifugation procedure. The transmission electron microscopy analysis revealed that their morphology is similar to the empty capsids produced in human cells. CONCLUSIONS: Taken together, the results show for the first time that yeast can be used to assemble AAV capsid and, therefore, as a genetic system to identify novel cellular factors involved in AAV biology.  相似文献   

19.
Adeno-associated viruses (AAVs) are single-stranded dependent parvoviruses being developed as transducing vectors. Although at least five serotypes exist (AAV types 1 to 5 [AAV1 to -5]), only AAV2, AAV3, and AAV4 have been sequenced, and the vectors in use were almost all derived from AAV2. Here we report the cloning and sequencing of a second AAV3 genome and a new AAV serotype designated AAV6 that is related to AAV1. AAV2, AAV3, and AAV6 were 82% identical at the nucleotide sequence level, and AAV4 was 75 to 78% identical to these AAVs. Significant sequence variation was noted in portions of the capsid proteins that presumably are responsible for serotype-specific functions. Vectors produced from AAV3 and AAV6 differed from AAV2 vectors in host range and serologic reactivity. The AAV3 and AAV6 vector serotypes were able to transduce cells in the presence of serum from animals previously exposed to AAV2 vectors. Our results suggest that vectors based on alternative AAV serotypes will have advantages over existing AAV2 vectors, including the transduction of different cell types, and resistance to neutralizing antibodies against AAV2. This could be especially important for gene therapy, as significant immunity against AAV2 exists in human populations and many protocols will likely require multiple vector doses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号