首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The ineffective control measures of pathogens is due to variability among their populations. Hence, the study of pathogenic variation of Fusarium verticillioides strains on maize genotypes. Six F. verticillioides infected maize ear were randomly obtained from three agro-ecological zones in Southwest Nigeria. Pathogenicity of F. verticillioides strains at 1.0?×?106 spores/mL were examined in vivo based on the rating scale of 1–7 on maize genotypes T2L COMP.1.STR SYN-W-1, PVA SYN 8F2, and T2L COMP.4. The pathogens were inoculated to the maize genotypes on 8th week for disease severity and were all moderately susceptible, however, genotype T2L COMP.4 was the most susceptible. It was observed that, 9.4% were classified as highly virulent, 12.5% as virulent, 37.5% as moderately virulent, 21.8% as slightly virulent, and 18.8% as non-virulent. In all, Fusarium verticillioides strains displayed different degrees of virulence, however, maize genotype T2L COMP.4 was the most susceptible to ear rot.  相似文献   

2.
A fungus, Fusarium verticillioides (NRRL 26518), was isolated by screening soil samples using corn fiber xylan as carbon source. The extracellular xylanase from this fungal strain was purified to apparent homogeneity from the culture supernatant by ultrafiltration using a 30,000 cut-off membrane, octyl-Sepharose chromatography and Bio gel A-0.5 m gel filtration. The purified xylanase (specific activity 492 U/mg protein; MW 24,000; pI 8.6) displayed an optimum temperature at 50 degrees C and optimum pH at 5.5, a pH stability range from 4.0 to 9.5 and thermal stability up to 50 degrees C. It hydrolyzed a variety of xylan substrates mainly to xylobiose and higher short-chain xylooligosaccharides. No xylose was formed. The enzyme did not require metal ions for activity and stability.  相似文献   

3.
The preformed antimicrobial compounds produced by maize, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and its desmethoxy derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one, are highly reactive benzoxazinoids that quickly degrade to the antimicrobials 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), respectively. Fusarium verticillioides (= F. moniliforme) is highly tolerant to MBOA and BOA and can actively transform these compounds to nontoxic metabolites. Eleven of 29 Fusarium species had some level of tolerance to MBOA and BOA; the most tolerant, in decreasing order, were F. verticillioides, F. subglutinans, F. cerealis (= F. crookwellense), and F. graminearum. The difference in tolerance among species was due to their ability to detoxify the antimicrobials. The limited number of species having tolerance suggested the potential utility of these compounds as biologically active agents for inclusion within a semiselective isolation medium. By replacing the pentachloronitrobenzene in Nash-Snyder medium with 1.0 mg of BOA per ml, we developed a medium that resulted in superior frequencies of isolation of F. verticillioides from corn while effectively suppressing competing fungi. Since the BOA medium provided consistent, quantitative results with reduced in vitro and taxonomic efforts, it should prove useful for surveys of F. verticillioides infection in field samples.  相似文献   

4.
Fusarium verticillioides, a fungal pathogen of maize, produces fumonisin mycotoxins that adversely affect human and animal health. Basic questions remain unanswered regarding the interactions between the host plant and the fungus that lead to the accumulation of fumonisins in maize kernels. In this study, we evaluated the role of kernel endosperm composition in regulating fumonisin B1 (FB1) biosynthesis. We found that kernels lacking starch due to physiological immaturity did not accumulate FB1. Quantitative polymerase chain reaction analysis indicated that kernel development also affected the expression of fungal genes involved in FB1 biosynthesis, starch metabolism, and nitrogen regulation. A mutant strain of F. verticillioides with a disrupted a-amylase gene was impaired in its ability to produce FB1 on starchy kernels, and both the wild-type and mutant strains produced significantly less FB1 on a high-amylose kernel mutant of maize. When grown on a defined medium with amylose as the sole carbon source, the wild-type strain produced only trace amounts of FB1, but it produced large amounts of FB1 when grown on amylopectin or dextrin, a product of amylopectin hydrolysis. We conclude that amylopectin induces FB1 production in F. verticillioides. This study provides new insight regarding the interaction between the fungus and maize kernel during pathogenesis and highlights important areas that need further study.  相似文献   

5.
6.
Fumonisin B1 (FB(1)) biosynthesis is repressed in cultures containing ammonium as the nitrogen source and when grown on blister kernels, the earliest stages of kernel development. In this study AREA, a regulator of nitrogen metabolism, was disrupted in Fusarium verticilliodes. The mutant (DeltaareA) grew poorly on mature maize kernels, but grew similar to wild type (WT) with the addition of ammonium phosphate. FB(1) was not produced by DeltaareA under any condition or by the WT with added ammonium phosphate. Constitutive expression of AREA (strain AREA-CE) rescued the growth and FB(1) defects in DeltaareA. Growth of WT, DeltaareA, and AREA-CE on blister-stage kernels was similar. After 7 days of growth, none of the strains produced FB(1) and the pH of the kernel tissues was 8.0. Addition of amylopectin to the blister kernels resulted in a pH near 6.6 and FB(1) production by WT and AREA-CE. The results support the hypothesis that FB(1) biosynthesis is regulated by AREA. Also the failure to produce FB(1) in blister kernels is due to high pH conditions generated because of an unfavorable carbon/nitrogen environment.  相似文献   

7.
The aim of this study was to evaluate the effectiveness of the combination of Bacillus subtilis TM3 formulation with botanical pesticides in suppressing Fusarium verticilloides infection in corn. The research was carried out at the Plant Pathology Laboratory and the Experimental Farm of Indonesian Cereals Research Institute (ICERI) from February to November 2019. The research consisted of two stages, namely an in vitro test of antagonists of botanical pesticides against F. verticilloides using 5 types of plant extracts namely betel leaf extract, turmeric, galangal, cosmos, and clove leaf. The second stage was to test the effectiveness of the combination of the formulation of B. subtilis TM3 with the best 3 types of plant extracts in vitro testing in suppressing F. verticilloides infection in plants. The results of the in vitro study showed that the plant extracts of betel leaf, clove leaf and galangal had the best inhibitory ability on the mycelia growth of F. verticilloides. Meanwhile, the field test found that the application of the B. subtilis TM3 formulation, either alone or in combination with plant extracts, was able to suppress F. verticilloides infection. The combination of B. subtilis TM3 formulation with betel leaf extract showed the best inhibition of 20% against stem rot disease and 13.33% against corn cob rot. This treatment did not affect production quantitatively, but was able to suppress the decline in seed quality due to F. verticilloides infection. Seeds grown by the Plastic Rolled Paper Test (PRPT) method were not only infected with F. verticilloides, but also infected with other seed-borne pathogens, such as Aspergillus niger and A. falvus. The presence of these two pathogens did not inhibit the growth of F. verticilloides in kernels.  相似文献   

8.
Wang  Zeping  Li  Yijie  Li  Changning  Song  Xiupeng  Lei  Jingchao  Gao  Yijing  Liang  Qiang 《Molecular biology reports》2019,46(4):3777-3789
Molecular Biology Reports - Fusarium verticillioides is the pathogen associated with pokkah boeng disease (PBD), the most significant airborne disease of sugarcane. The molecular mechanisms that...  相似文献   

9.
A greenhouse experiment was conducted to evaluate the effect of soil-dwelling larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, on infection of maize roots by the mycotoxin-producing plant-pathogenic fungus, Fusarium verticillioides (Saccardo) Nirenberg (synonym=Fusarium moniliforme Sheldon). The time and order of application of F. verticillioides and western corn rootworm were varied in three different treatments to investigate the influence of timing on root colonization of F. verticillioides and western corn rootworm larval development. Root feeding by western corn rootworm larvae increased root colonization by F. verticillioides (as determined by real-time polymerase chain reaction) up to 50-fold when a high inoculum (10(7) spores/plant) of F. verticillioides was applied before western corn rootworm eggs were added. This effect was stronger the earlier F. verticillioides was applied relative to the time of western corn rootworm egg application but was only significant for the high F. verticillioides inoculum density treatment; F. verticillioides colonization was not increased when a low F. verticillioides inoculum density (10(6) spores/plant) was applied. F. verticillioides slightly suppressed larval development in that the ratio of second- to third-instar larvae was higher in treatments with F. verticillioides than without F. verticillioides. F. verticillioides reduced western corn rootworm head capsule width when applied before or simultaneously with western corn rootworm. The results of this study are discussed focusing on conditions that favor root colonization by F. verticillioides and its influence on western corn rootworm larval development.  相似文献   

10.
Endo-polygalacturonase (PG) may be a critical virulence factor secreted by several fungi upon plant invasion. The single-copy gene encoding PG in Fusarium verticillioides and in eight other species of the Gibberella fujikuroi complex (F. sacchari, F. fujikuroi, F. proliferatum, F. subglutinans, F. thapsinum, F. nygamai, F. circinatum, and F. anthophilum) was functionally analyzed in this paper. Both the nucleotide and amino acid sequences were highly similar among the 12 strains of F. verticillioides analyzed, as well as among those from the G. fujikuroi complex. The PGs were not inhibited by the polygalacturonase-inhibiting proteins (PGIPs) from the monocot asparagus and leek plants, but were inhibited to variable extents by bean PGIP. PGs from F. verticillioides, F. nygamai and one strain of F. proliferatum were barely inhibited. Residue 97 within PG was demonstrated to contribute to the different levels of inhibition. Together these findings provide new insights into the structural and functional relationships between the PG from the species of the G. fujikuroi complex and the plant PGIP.  相似文献   

11.
12.
13.
Enteroblastic phialidic conidiation by the corn pathogen Fusarium verticillioides (teleomorph Gibberella moniliformis) produces abundant, mostly single-celled microconidia in distinctive long chains. Because conidia might be critical for establishing in planta associations, we characterized a spontaneous F. verticillioides conidiation mutant in which phialides were incapable of enteroblastic conidiogenesis. Instead of producing a conidium, the phialide apex developed a determinate, slightly undulating, germ tube-like outgrowth, in which nuclei rarely were seen. Electron microscopy showed that the apical outgrowth possessed a thick, rough, highly fibrillar outer wall layer that was continuous with the thinner and smoother outer wall layer of the phialide. Both the inner wall layer and plasma membrane also were continuous between the apical outgrowth and phialide. The apical neck region of mutant phialides lacked both a thickened inner wall layer and a wall-building zone, which were critical for conidium initial formation. No indication of septum formation or separation of the apical outgrowth from mutant phialides was observed. These aberrations suggested the apical outgrowth was not a functional conidium of altered morphology. The mutation did not prevent perithecium development and ascosporogenesis. Genetic analyses indicated that a single locus, designated FPH1 (frustrated phialide), was responsible for the mutation. The conidiogenesis mutants were recovered only during certain sexual crosses involving wild-type conidiating parents, and then only in some perithecia, suggesting that mutation of FPH1 might be meiotically induced, perhaps due to mispairing between homologous chromosomes and deletion of the gene from a chromosome.  相似文献   

14.
Fusarium verticillioides is a fungus of significant economic importance because of its deleterious effects on plant and animal health and on the quality of their products. Corn (Zea mays) is the primary host for F. verticillioides, and we have investigated the impact of the plant's antimicrobial compounds (DIMBOA, DIBOA, MBOA, and BOA) on fungal virulence and systemic colonization. F. verticillioides is able to metabolize these antimicrobials, and genetic analyses indicated two loci, Fdb1 and Fdb2, were involved in detoxification. Mutation at either locus caused sensitivity and no detoxification. In vitro physiological complementation assays resulted in detoxification of BOA and suggested that an unknown intermediate compound was produced. Production of the intermediate compound involved Fdbl, and a lesion in fdb2 preventing complete metabolism of BOA resulted in transformation of the intermediate into an unidentified metabolite. Based on genetic and physiological data, a branched detoxification pathway is proposed. Use of genetically characterized detoxifying and nondetoxifying strains indicated that detoxification of the corn antimicrobials was not a major virulence factor, since detoxification was not necessary for development of severe seedling blight or for infection and endophytic colonization of seedlings. Production of the antimicrobials does not appear to be a highly effective resistance mechanism against F. verticillioides.  相似文献   

15.
Endo-polygalacturonase (PG) may be a critical virulence factor secreted by several fungi upon plant invasion. The single-copy gene encoding PG in Fusarium verticillioides and in eight other species of the Gibberella fujikuroi complex (F. sacchari, F. fujikuroi, F. proliferatum, F. subglutinans, F. thapsinum, F. nygamai, F. circinatum, and F. anthophilum) was functionally analyzed in this paper. Both the nucleotide and amino acid sequences were highly similar among the 12 strains of F. verticillioides analyzed, as well as among those from the G. fujikuroi complex. The PGs were not inhibited by the polygalacturonase-inhibiting proteins (PGIPs) from the monocot asparagus and leek plants, but were inhibited to variable extents by bean PGIP. PGs from F. verticillioides, F. nygamai and one strain of F. proliferatum were barely inhibited. Residue 97 within PG was demonstrated to contribute to the different levels of inhibition. Together these findings provide new insights into the structural and functional relationships between the PG from the species of the G. fujikuroi complex and the plant PGIP.  相似文献   

16.
17.
Resistance to Fusarium verticillioides in 20 Zambian Maize Hybrids   总被引:1,自引:0,他引:1  
Visual assessment of maize ears and Fusarium spp. isolation from kernels were compared to determine resistance in 20 Zambian maize hybrids. The mean percentage Fusarium spp. isolations in non-inoculated field experiments varied between years (12–62%). Symptomless infection by Fusarium spp. had domination over symptomatic. More than 95% of the Fusarium species isolated were F. vertcillioides . A disease severity index and the percentage of visibly diseased, discoloured and damaged kernels did not differentiate hybrids with respect to Fusarium spp. ear rot under natural conditions. Artificial inoculation provided a good estimate of Fusarium spp. resistance based on visual symptoms in a year of moderate disease pressure, but not in a year of high disease pressure. The percentage Fusarium spp. isolations showed significant differences between hybrids after inoculation, and it was significantly negatively correlated with the number of days from planting to midsilk. Parental line L5522 contributed to hybrid resistance to Fusarium . The hybrids MM 701-1 and MM 752 were the most resistant among the 20 hybrids.  相似文献   

18.
19.
Fusarium verticillioides is one of the most important fungal pathogens in maize causing both pre- and post-harvest losses and also capable of producing Fumonisins. In the present study attempts have been made for screening potential T. harzianum from native rhizosphere and to study its effect on Fusarium ear rot disease, fumonisin accumulation in different maize cultivars grown in India. Eight isolates of T. harzianum were isolated and T. harzianum isolate Th-8 exhibited better antifungal activity than carbendizim. Th-8 was formulated in different solid substrates like wheat bran, paddy husk, talcum powder and cornstarch. Maize seeds of kanchan (moderately resistant), pioneer (resistant) and sweet corn (susceptible) were selected for laboratory and field studies and these seeds were treated with a conidial suspension of T. harzianum at the rate of 1 × 108 spore/ml and formulation at the rate of 10 g/kg. Treated seeds were subjected to evaluate F. verticillioides incidence, seed germination, seedling vigour and field emergence, yield, thousand seed weight and fumonisin production. It was found that the pure culture of T. harzianum was more effective in reducing the F. verticillioides and fumonisin incidence followed by Talc formulation than the carbendizim treated and untreated control. Formulations of T. harzianum were effective at reducing the F. verticillioides and Fumonisin infection and also increasing the seed germination, vigour index, field emergence, yield, and thousand seed weight in comparison with the control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号