首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of inositol hexakisphosphate, 2,3-diphosphoglycerate, dextran sulphate, and heparin on the spectroscopic (absorbance, circular dichroism, EPR) properties of the nitric oxide derivative of ferrous dromedary (Camelus dromedarius) hemoglobin was investigated. The results obtained show that: (i) all polyanions bind to the protein at the same sites, but with different affinities; (ii) polyanions affect the protein conformation of the ferrous nitrosyl derivative in a different way with respect to aquo-ferric and ferrous oxy dromedary hemoglobin; and (iii) the data obtained provide further independent evidence for the existence in dromedary hemoglobin of two functionally distinct polyanion binding sites that affect the conformational equilibrium of the protein in opposite ways.  相似文献   

2.
Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. In this paper, we show that LcrG can bind HeLa cells, and we analyse the role of proteoglycans in this phenomenon. Treatment of the HeLa cells with heparinase I, but not chondroitinase ABC, led to inhibition of binding. Competition assays indicated that heparin and dextran sulphate strongly inhibited binding, but that other glycosaminoglycans did not. This demonstrated that binding of HeLa cells to purified LcrG is caused by heparan sulphate proteoglycans. LcrG could bind directly to heparin-agarose beads and, in agreement with these results, analysis of the protein sequence of Yersinia enterocolitica LcrG revealed heparin-binding motifs. In vitro production and secretion by Y . enterocolitica of the Yops was unaffected by the addition of heparin. However, the addition of exogenous heparin decreased the level of YopE–Cya translocation into HeLa cells. A similar decrease was seen with dextran sulphate, whereas the other glycosaminoglycans tested had no significant effect. Translocation was also decreased by treatment of HeLa cells with heparinitase, but not with chondroitinase. Thus, heparan sulphate proteoglycans have an important role to play in translocation. The interaction between LcrG and heparan sulphate anchored at the surface of HeLa cells could be a signal triggering deployment of the Yop translocation machinery. This is the first report of a eukaryotic receptor interacting with the type III secretion and associated translocation machinery of Yersinia or of other bacteria.  相似文献   

3.
Human Factor XII is known to undergo autoactivation in the presence of dextran sulphate of Mr 500,000. We have now studied the dependence of this reaction on the Mr of the dextran sulphate by using fractions resolved by gel filtration. We have found that autoactivation can be induced by dextran sulphate fractions with Mr as low as 3000, and there is a marked dependence of the rate constant of autoactivation on the Mr value. Fractions with Mr below 8000 gave very low rates of autoactivation; there was a sharp increase in the rate obtained when the Mr of the dextran sulphate was greater than 10,000. Various preparations of heparin were also able to support the autoactivation of Factor XII and gave a very similar relationship between molecular size and reaction rate. The data provide support for the hypothesis that the mechanism by which the 'surface' acts in contact activation involves the presence, on the same particle, of multiple binding sites for the proteins.  相似文献   

4.
Purified m beta-acrosin catalysed amidolysis of several p-nitroanilides with C-terminal arginine residues. Antithrombin III inhibited amidolysis catalysed by the enzyme. This effect of antithrombin III was potentiated by heparin, and to a modest extent by heparan sulphate, cellulose sulphate, dextran sulphate and xylan sulphate. De-N-sulphated heparin, de-N-sulphated N-acetylated heparin, heparin of low relative molecular mass, chondroitin 4-sulphate, chondroitin 6-sulphate, dermatan sulphate and hyaluronic acid were ineffective.  相似文献   

5.
The ability of several animal, plant, and bacterial derived polyanions (PAs) as well as synthetic PAs to compete with heparin for the binding of acidic fibroblast growth factor (aFGF) was correlated with their ability to potentiate the mitogenic and neurotrophic actions of this factor. Dextran sulphate, K-carrageenan, pentosan sulphate, polyanethole sulfonate, heparin, and fucoidin competed for the heparin binding site on aFGF at relatively low concentrations (≤50 μg/ml). λ-carrageenan, ι-carrageenan, and polyvinyl sulphate exhibited lower affinity for aFGF, whereas hyaluronic acid, dermatan sulphate, chondroitin-6-sulphate, chondroitin-4-sulphate, and uncharged dextran displayed very low or no demonstrable affinity. Potentiation of the mitogenic action of aFGF for Balb/c 3T3 fibroblasts tended to be in general agreement with the aFGF binding affinity of the PAs. However, polyanethole sulfonate, the carrageenans, polyvinyl sulphate, fucoidin, and pentosan sulphate exerted a mitogenic action on the 3T3 cells that was independent of, and in addition to, the ability of these GAGs to potentiate the action of aFGF. The ability to potentiate the neurotrophic action of aFGF for E8 chick ciliary neurons was a general property of those PA with low or no activity in the mitogen assay. Thus hyaluronic acid, dermatan sulphate, chondroitin-4-sulphate, chondroitin-6-sulphate, and even uncharged dextran all potentiated aFGF induced neuronal survival. The differential effects of these PA in potentiating the biological activities of aFGF are discussed in relation to their ability to compete for the heparin-binding site of aFGF. © 1993 Wiley-Liss, Inc.  相似文献   

6.
We have previously shown that heparin is a potent inhibitor of a mammalian DNA topoisomerase I. We have now investigated the mechanism of its inhibition. This was carried out first by scrutinizing the structural features of heparin molecules responsible for the inhibition. Commercial heparin preparation was fractionated by antithrombin III-Sepharose into non-adsorbed, low-affinity and high-affinity fractions, of which only the high-affinity fraction of heparin is known to contain a specific oligosaccharide sequence responsible for the binding to antithrombin III. These fractions all exhibited essentially similar inhibitory activities. Furthermore, when chemically sulphated to an extent comparable with or higher than heparin, otherwise inactive glycosaminoglycans such as heparan sulphate, chondroitin 4-sulphate, dermatan sulphate and neutral polysaccharides such as dextran and amylose were converted into potent inhibitors. Sulphated dermatan sulphate, one of the model compounds, was further shown to bind competitively to the same sites on the enzyme as heparin. These observations strongly suggested that topoisomerase inhibition by heparin is attributable primarily, if not entirely, to the highly sulphated polyanionic nature of the molecules. In a second series of experiments we examined whether heparin inhibits only one or both of the topoisomerase reactions, i.e. nicking and re-joining. It was demonstrated that both reactions were inhibited by heparin, but the nicking reaction was more severely affected than was the re-joining reaction.  相似文献   

7.
Abstract: The pH optimum of native adrenal medulla tyrosine hydroxylase activity is shifted from 5.8 to 6.4 by polyanions (heparin, dextran sulphate), salts (NaCl, Na2SO4) and the anionic buffer 2-( N -morpholino)ethanesulphonic acid (MES). Simultaneously, the activity at the optimal pH is increased. Kinetic studies have shown that this activation is associated with a decrease of the apparent K m of the enzyme for the cofactor 6,7-dimethyltetrahydropterin (DMPH4) and an increase in the V max for tyrosine and DMPH4. The K m for the tyrosine remained unchanged. These data have been interpreted in terms of the polyelectrolyte theory. The adsorption of tyrosine hydroxylase on various affinity gels containing heparin, dextran sulphate or unsulphated polymer dextran as ligands indicate that the activation of the enzyme is mediated by electrostatic interactions with the anionic species. The site of electrostatic interaction possesses some specificity since the binding constants are higher for heparin or dextran sulphate than for NaCl or MES buffer. Moreover, 3-( N -morpholino)propanesulphonic acid (MOPS) a slightly structurally different buffer inhibits the enzyme activity whereas N -(2-acetamido)-2-amino-ethanesulphonic acid (ACES) has no effect. A limited proteolytic digestion which preserves the enzymatic activity, destroys the effects of the anions. The isoelectric point and the molecular parameters of tyrosine hydroxylase are markedly altered after limited digestion. It is therefore suggested that the interaction between the hydroxylase and anionic compounds occurs on a part of the protein which is different from the active site and which is lost by proteolysis. This portion of the protein might be involved in regulation of native tyrosine hydroxylase.  相似文献   

8.
Ca2+/phospholipid-dependent protein kinase (PKC) was inhibited by sulphated polysaccharides. Pentosan polysulphate (PPS) and heparin were 8-10-times more potent than dextran sulphate or heparan sulphate. Steady-state studies revealed that PPS was a competitive inhibitor with respect to ATP with an apparent Ki value of 0.32 micrograms/ml and a non-competitive inhibitor with respect to histones. In contrast, the inhibition of PKC by heparin was competitive with substrate and non-competitive with respect to ATP. The interaction of sulphated polysaccharides with the catalytic domain of PKC was further demonstrated by the absence of effect on [3H]phorbol 12,13-dibutyrate binding to the regulatory domain of PKC. Furthermore, PPS and heparin inhibited equally cAMP-dependent protein kinase and tyrosine protein kinase. Structure-function relationships indicated that the Inhibition of protein kinases by PPS and heparin fractions was highly dependent on molecular weight. Additionally, PKC-affinity chromatography revealed that a high-molecular-weight heparin fraction with strong anti-PKC activity was eluted. We set out to demonstrate that heparin and PPS, which are potent antiproliferative agents on vascular smooth muscle cells (SMC), alter intracellular PKC activity (both membrane and cytosolic). Therefore, it is suggested that the mechanism by which sulphated polysaccharides inhibit SMC growth may be by direct inhibition of PKC in SMC.  相似文献   

9.
The effect of heparin on macrophage (M phi) adherence and on the reactivity of membrane SH-groups to the specific SH-oxidizing agent 4,4'-dithiodipyridine (PDS) was studied. Various types of SH-reactive agents, except 5,5'-dithio-bis (2-nitrobenzoate) (DTNB), were found to inhibit adherence of mouse peritoneal M phi to serum-coated Falcon surfaces. Heparin inhibited M phi-adherence in serum containing medium and in higher concentrations stimulated the adherence inhibitory effect of PDS, especially in Ca-depleted medium. This effect of heparin may be due to its polyanionic character, as dextran sulphate but not dextran induced similar changes. The effect of heparin to increase the sensitivity of membrane SH-groups against SH-reactive agents was demonstrated also by cytotoxicity experiments. It is concluded that heparin makes the M phi-membrane unstable, by exposing some hidden SH-groups playing a role in membrane function.  相似文献   

10.
A variety of sulphated polyanions in addition to heparin and dermatan sulphate stimulate the inhibition of thrombin by heparin cofactor II (HCII). Previous investigations indicated that the binding sites on HCII for heparin and dermatan sulphate overlap but are not identical. In this study we determined the concentrations (IC50) of various polyanions required to stimulate thrombin inhibition by native recombinant HCII in comparison with three recombinant HCII variants having decreased affinity for heparin (Lys-173-->Gln), dermatan sulphate (Arg-189-->His), or both heparin and dermatan sulphate (Lys-185-->Asn). Pentosan polysulphate, sulphated bis-lactobionic acid amide, and sulphated bis-maltobionic acid amide resembled dermatan sulphate, since their IC50 values were increased to a much greater degree (>/=8-fold) by the mutations Arg-189-->His and Lys-185-->Asn than by Lys-173-->Gln (Gln and Lys-185-->Asn (>/=6-fold) than by Arg-189-->His (相似文献   

11.
Heparin enhances the rate of binding of fibronectin to collagen.   总被引:16,自引:1,他引:15       下载免费PDF全文
125I-labelled fibronectin is shown to bind to both native and denatured collagen immobilized on Sephadex beads in reactions that exhibit different kinetics. The rates of both reactions were enhanced by the presence of heparin or highly sulphated dextran sulphate but not by other glycosaminoglycans or dextran sulphates having low sulphate contents.  相似文献   

12.
The interactions of fibrinogen wth acidic polysaccharides have been studied in connection with anticoagulant properties of heparin. Despite the high charge density of heparin, a polyelectrolyte complex of fibrinogen and heparin could not be detected at any mixing ratio by the measurement of turbidity, metachromasis with acridine orange, circular dichroism, and viscosity of their mixture solutions. Sodium cellulose sulphate and dextran sulphate, however, which have similar charge densities, formed precipitates of polyelectrolyte complexes with fibrinogen. This difference was presumed to be due to the secondary structure characteristics of heparin in solution as well as the relatively low molecular weight of heparin.  相似文献   

13.
Glycosaminoglycans (GAGs) are believed to be associated with prion disease pathology and also with metabolism of the prion protein. Fluorescence polarization assay (FPA) of binding between bovine recombinant prion protein (brecPrP) and heparin labelled with AlexaFluor488 was used in model experiments to study glycosaminoglycan-prion protein interaction. Heparin binding to brecPrP was a rapid reversible event which occurred under defined conditions. The interaction of brecPrP with fluorophore-labelled heparin was inhibited by the presence of Cu(2+) ions and was sensitive to competition with heparin, heparan sulphate, and dextran. The dissociation constant of the heparin-brecPrP complex was 73.4+/-3.7 nM. Circular dichroism (CD) experiments indicated that the structure of brecPrP was less helical in the presence of heparin.  相似文献   

14.
The inhibiting effect of sulphated and nonsulphated glycosaminoglycans and polysaccharides on the normal outgrowth of capillaries was tested in the chick embryo chorioallantoic membrane (CAM) with and without the presence of hydrocortisone. An antiangiogenic response to 50 µg of heparin and heparan sulphate (without hydrocortisone present) was observed in 38.8% and 23.1% of the CAMS, respectively, while the antiangiogenic response rate for dermatan sulphate, chondroitin sulphate A or C, hyaluronic acid and keratan sulphate was 15.9–0%. All sulphated homopolysaccharides tested were more effective than the naturally occurring glycosaminoglycans. Nonsulphated dextran and (methyl) cellulose had no antiangiogenic effect, while largely desulphated heparin retained such an effect. Hydrocortisone generally improved the antiangiogenic effect, a 100% response was obtained when it was combined with cellulose sulphate or fucoidan (polyfucose sulphate derived from marine algae), but the antiangiogenic effect of the largely desulphated heparin was unaffected by the presence of hydrocortisone. The results show that different polysulphated polysaccharides also have an antiangiogenic effect, without the addition of corticosteroids. The effect was apparently independent of their degree of sulphation, but the glycosidic structure may be of critical importance.  相似文献   

15.
Chondroitin sulphate, injected intravenously into rats and given prior to intravenous 125I-labelled hyaluronan with a mean Mw of about 400 kDa, was shown to inhibit the rapid receptor-mediated uptake of hyaluronan by the liver. The labelled hyaluronan that remained in the circulation was shown, by size exclusion chromatography of serum and urine, to be rapidly degraded down to fragments of lower Mw and filtered out into the urine and tissues. When the uptake of 125I-hyaluronan was inhibited by unlabelled hyaluronan, only very low degradation and urinary excretion were found. Liver uptake could also be inhibited by dextran sulphate but not by heparin. Unlabelled hyaluronan could inhibit the liver uptake of labelled chondroitin sulphate but not labelled heparin. Unlabelled chondroitin sulphate and dextran sulphate inhibited cell association of labelled hyaluronan to liver endothelial cells in culture more effectively than unlabelled hyaluronan. Our data show that the liver hyaluronan receptors also recognize and effectively bind chondroitin sulphate and dextran sulphate but not heparin and that a hyaluronan-specific saturable degradative mechanism exists in the circulation. Such a mechanism could explain why hyaluronan in the general circulation has a much lower Mw than the hyaluronan in lymph. The results also indicate that increased hyaluronan levels in serum, and increased urinary excretion of hyaluronan, may be secondary to increased outflow of chondroitin sulphate from the tissues during some pathological conditions. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Addition of heparin and dextran sulphate to human skin fibroblasts in cell cultures caused an increase in [3H]-proline incorporation into collagen and total protein in the culture medium by cells derived from nondiabetics. Cells from type 2 diabetic subjects were significantly less affected by dextran sulphate addition, suggesting altered regulatory mechanisms for collagen production in these cells. Addition of chondroitin sulphate caused a dose-dependent increase in labelled collagen, indicating a possible role for this glycosaminoglycan as modulator of collagen deposition.  相似文献   

17.
The mechanisms of sperm adhesion and release within the mammalian oviduct are still poorly understood. In this in vitro study, a previously developed adhesion assay was used to analyze the effects of heparin, N-desulfated heparin, fucoidan, dextran sulfate, and dextran on bovine sperm-oviductal cell adhesion and release. Results showed that 1) all sulfated glycoconjugates were powerful inhibitors of sperm binding to oviductal monolayers in a dose-dependent manner, whereas N-desulfated heparin and dextran had no effect; 2) sperm pretreatment with heparin and fucoidan markedly inhibited adhesion; 3) treatment of oviductal monolayers with heparinase I, II, or sodium chlorate (an inhibitor of sulfation) had no effect on sperm adhesion; 4) sulfated glycoconjugates were also powerful and quick inducers of sperm release from oviductal monolayers; and 5) addition of sulfated glycoconjugates to the cocultures caused a sudden increase of bound-sperm flagellar beat frequencies, followed by a release of highly motile sperm. In conclusion, these data support the hypothesis that sulfated glycoconjugates may act as signals that induce sperm release and migration from the oviductal reservoir.  相似文献   

18.
The effects of sulfated glycoconjugates on the preparation of mammalian sperm for fertilization were investigated. The three sulfated glycoconjugates tested were heparin, dextran sulfate, and the fucose sulfate glycoconjugate (FSG) from the sea urchin egg jelly coat. In vivo, FSG induces the acrosome reaction in sea urchin sperm. Bovine sperm were found to be capacitated by heparin and FSG as judged both by ability of lysophosphatidylcholine (LC) to induce an acrosome reaction and by ability to fertilize bovine oocytes in vitro. The mechanism by which heparin or FSG capacitated bovine sperm appeared similar, since glucose inhibited capacitation by both glycoconjugates. In contrast to effects on bovine sperm, heparin and FSG induced the acrosome reaction in capacitated hamster sperm. When hamster sperm were incubated under noncapacitating conditions, heparin had no effect on capacitation or the acrosome reaction. Three molecular weights (MW) of dextran sulfate (5,000, 8,000, 500,000) were found to capacitate bovine sperm as judged by the ability of LC to induce an acrosome reaction. Whereas bovine sperm incubated with 5,000 or 8,000 M W dextran sulfate fertilized more bovine oocytes than control sperm (P <0.05), sperm treated with 500,000 M W dextran sulfate failed to penetrate oocytes. The high-MW dextran sulfate appeared to interact with the zona pellucida and/or sperm to prevent sperm binding. Results suggest that sulfated glycoconjugates may prepare sperm for fertilization across a wide range of species.  相似文献   

19.
A simple two-step purification of protease nexin.   总被引:2,自引:1,他引:1       下载免费PDF全文
This paper describes a simple purification procedure for protease nexin, a serine proteinase inhibitor secreted by cultured human fibroblasts that regulates proteinase activity at and near the cell surface. The first step in the procedure takes advantage of the high-affinity binding of protease nexin to dextran sulphate-Sepharose. This step eliminates the need for prior concentration of the serum-free fibroblast-conditioned medium, since protease nexin binds to the resin in the presence of physiological saline. The use of dextran sulphate also provides an affinity resin with considerably less variability than the heparin-based resins previously used. Final purification to homogeneity involves a combination of DEAE-Sepharose in-line with dextran sulphate-Sepharose to simultaneously purify and concentrate the protein. Purified protease nexin is shown by Ouchterlony analysis and peptide mapping to be immunologically and structurally distinct from antithrombin III and heparin cofactor II, two plasma proteinase inhibitors with similar properties.  相似文献   

20.
D Sacco  E Dellacherie 《FEBS letters》1986,199(2):254-258
Interactions of dextran sulfate with amino groups of oxy- and deoxyhemoglobin were followed by both potentiometric measurements between pH 6 and 7.3 and oxygen-binding studies. The uptake of protons observed upon addition of dextran sulfate to hemoglobin shows that the interaction with the deoxy form is strong and that the main site is probably located in the phosphate-binding beta-cavity, whereas the interaction with the oxy form is more diffuse, probably with a great number of relatively weak binding sites. The influence of dextran sulfate on the oxygen dissociation curve of hemoglobin confirms these findings, as the effect of the polymer is to lower hemoglobin affinity for oxygen to a great extent, which proves that it stabilizes the deoxy form more strongly than the oxy one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号