首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptive radiation of modern New World monkeys unfolded as the major lineages diversified within different dietary-adaptive zones predicated upon a fundamentally frugivorous habit. The broad outlines of this pattern can be seen in the fossil record, beginning in the early Miocene. Cebids are obligate frugivorous predators. The smallest forms (Cebuella, Callithrix) are specialized exudativores, and the largest (cebines) are seasonally flexible omnivores, feeding particularly on insects (Saimiri) or "hard" foods, such as pith and palm nuts (Cebus), when resources are scarce. The smaller-bodied atelids (Callicebus, Aotus) may use insects or leaves opportunistically, but pitheciins (saki-uakaris) specialize on seeds as their major protein source. The larger atelines (Alouatta, Brachyteles) depend on leaves or on ripe fruit (Ateles). Locomotion, body size, and dietary adaptations are linked: claws and small body size opened the canopy-subcanopy niche to callitrichines; climbing and hanging, the fine-branch setting to the atelines; large size and strength, semiprehensile tails, and grasping thumbs, the extractive insectivory of Cebus; deliberate quadrupedalism, the energy-saving transport of folivorous Alouatta. Body size increases and decreases occurred often and in parallel within guilds and lineages. Conventional dietary categories, particularly frugivory, are inadequate for organizing the behavioral and anatomical evidence pertinent to evolutionary adaptation. Related models of morphological evolution based on feeding frequencies tend to obfuscate the selective importance of "critical functions," responses to the biomechanically challenging components of diet that may be determined by a numerically small, or seasonal, dietary fraction. For fossils, body size is an unreliable indicator of diet in the absence of detailed morphological information. More attention needs to be given to developing techniques for identifying and quantifying mechanically significant aspects of dental form, the physical properties of primate foods, their mode of access, and the cycles of availability and nutritional value.  相似文献   

2.
Cebus apella, the black-capped or tufted capuchin, andSaimiri sciureus, the squirrel monkey, are frequently found in mixed species feeding and foraging groups throughout tropical South America and have been reported previously to show marked differences in techniques of insect foraging. Individuals of these taxa observed in central Surinam show numerous additional species-specific differences in other aspects of habitat utilization including gross dietary preferences, utilization of forest strata, locomotor behavior and arboreal support preferences.Cebus apella is more frugivorous, frequents the middle and lower levels of the main canopy, is predominantly quadrupedal and moves on medium-sized arboreal supports. By contrast, the smallerSaimiri sciureus is more insectivorous, frequents the lower strata of the forest, is more saltatory and moves on the smallest arboreal supports. Many of these differences in habitat use are interrelated and accord with patterns of habitat use seen in other primate taxa. The differences betweenCebus apella andSaimiri sciureus also accord with the types of behavioral differences frequently associated with differences in body size.  相似文献   

3.
Dental microwear analysis is conducted on a community of platyrrhine primates from South America. This analysis focuses on the primate community of Cachoeira Porteira (Para, Brazil), in which seven sympatric species occur: Alouatta seniculus, Ateles paniscus, Cebus apella, Chiropotes satanas, Pithecia Pithecia, Saguinus midas, and Saimiri sciureus. Shearing quotients are also calculated for each taxon of this primate community. Dental microwear results indicate significant differences between taxa, but are somewhat insufficient when it comes to discriminating between ecologically similar taxa. The primates of Cachoeira Porteira all incorporate a certain amount of fruit in their diet, entailing a definite amount of inter-specific competition as they must share food resources. Alouatta is the most folivorous taxon of this community, which is corroborated by dental microwear analysis. Ateles, although of a similar size to Alouatta, limits inter-specific competition by incorporating more fruit in its diet. Cebus has a very diverse omnivorous diet, which is highlighted in this study, as it compares to both fruit and leaf eating taxa. In some cases, microwear results need to be supplemented by other methods. For example, dental microwear seems insufficient to distinguish between Pithecia and Chiropotes, which eat foods with similar physical properties. However, other methods (i.e. shearing quotients and body mass) provide enough complimentary information to be able to highlight differences between the two taxa. On the other hand, dental microwear can highlight differences between primates which have similar diets, such as Saimiri and Saguinus. In this case, differences could be due to other exogenous factors.  相似文献   

4.
One of the most common types of polyspecific association observed in Neotropical primate communities is that between squirrel monkeys (Saimiri) and capuchins (Cebus). The present study focused on association patterns in two Saimiri sciureus groups in eastern Brazilian Amazonia, between March and October, 2009. The associations were analyzed in terms of the species involved, the degree of association, and niche breadth and overlap. The study involved two S. sciureus groups (B4 and GI) on the right and left bank of the Tocantins River, respectively, within the area of the Tucuruí reservoir in southeastern Pará. Relations between species were classified as associations (individuals within 50 m and moving in the same direction), and encounters (individuals within 50 m and no coordinated movement). Group B4 was in association with Cebus apella during 100% of monitoring, and with Chiropotes satanas in 20.2%. By contrast, Group GI associated with Cebus 54.8% of the time, and with Chiropotes utahickae 2.5%. Encounters with Alouatta belzebul and Saguinus niger were recorded at both sites, with Aotus azarae and Dasyprocta prymnolopha at B4, and with Callicebus moloch, Dasyproct aleporina, Mazama gouazoubira, and Nasua nasua at GI. Overall, Saimiri had a broader niche than Cebus in terms of vertical spacing and diet, but not for substrate use. This pattern did not appear to be affected by association. While group GI spent significantly (P < 0.05) more time in association with Cebus during the wet season, group B4 associated with Chiropotes more during the dry season. Despite the higher association rates, niche overlap was greater for all variables at B4. This may reflect differences in the ranging and foraging patterns at the two sites, and the varying potential benefits of association for Saimiri.  相似文献   

5.
Physical anthropologists have devoted considerable attention to the structure and function of the primate prehensile tail. Nevertheless, previous morphological studies have concentrated solely on adults, despite behavioral evidence that among many primate taxa, including capuchin monkeys, infants and juveniles use their prehensile tails during a greater number and greater variety of positional behaviors than do adults. In this study, we track caudal vertebral growth in a mixed longitudinal sample of white-fronted and brown capuchin monkeys (Cebus albifrons and Cebus apella). We hypothesized that young capuchins would have relatively robust caudal vertebrae, affording them greater tail strength for more frequent tail-suspension behaviors. Our results supported this hypothesis. Caudal vertebral bending strength (measured as polar section modulus at midshaft) scaled to body mass with negative allometry, while craniocaudal length scaled to body mass with positive allometry, indicating that infant and juvenile capuchin monkeys are characterized by particularly strong caudal vertebrae for their body size. These findings complement previous results showing that long bone strength similarly scales with negative ontogenetic allometry in capuchin monkeys and add to a growing body of literature documenting the synergy between postcranial growth and the changing locomotor demands of maturing animals. Although expanded morphometric data on tail growth and behavioral data on locomotor development are required, the results of this study suggest that the adult capuchin prehensile-tail phenotype may be attributable, at least in part, to selection on juvenile performance, a possibility that deserves further attention.  相似文献   

6.
The locomotor behavior, of seven sympatric species of New World monkeys—Saguinus midas midas, Saimiri sciureus, Pithecia pithecia, Chiropotes satanas chiropotes, Cebus apella apella, Alouatta seniculus, and Ateles paniscus panisus—was studied at the Raleighvallen-Voltzberg Nature Reserve in Central Surinam. This paper examines the way in which locomotor behavior is related to body size and to ecological parameters such as forest stratification, forest type, and diet. Locomotor behavior is clearly related to the size of the species; with increasing size, the amount of climbing increases and the amount of leaping decreases. In general, larger monkeys use larger arboreal supports; however, Saguinus midas midas uses relatively larger, and Ateles paniscus paniscus relatively smaller supports than expected from body size alone. Leaping is associated with use of the forest understory and with use of liane forest. Other types of locomotion are associated with main canopy use in a variety of forest types. There are no consistent associations between diet and either locomotor behavior or forest utilization; rather, monkeys with similar diets show locomotor and habitat differentiation.  相似文献   

7.
Sexual dimorphism in the postcranial skeleton of New World primates   总被引:2,自引:0,他引:2  
This study examines sexual dimorphism in 24 dimensions of the postcranial skeleton of four platyrrhine species: Callithrix jacchus, Saguinus nigricollis, Saimiri sciureus, and Cebus albifrons. The two callitrichid species show a relatively small amount of variation in the degree of sexual dimorphism among the different dimensions. Variation is considerably higher in the two cebid species as reflected by a mosaic pattern of sexual dimorphisms with males being significantly larger than females in some dimensions, and females significantly larger than males in others. In dimensions of the pectoral girdle and limb bones, males and females in each of the two cebid species are essentially scaled versions of each other, with males being peramorphic compared to females. This pattern is primarily the result of time hypermorphosis, i.e. an extension of the growth period in time in males. Rate hypermorphosis, i.e. an increase in the rate of growth in time in males, appears to play an additional role, however, in S. sciureus. By contrast, in dimensions of the true pelvis, sex differences in shape are dissociated from those in size. They are interpreted as the result of acceleration, i.e. increase in rate of shape change in females, as an adaptation to obstetrical functions. Interspecific analyses indicate positive allometry of mean degree of postcranial dimorphism with respect to body size. This coincides with previous findings by Leutenegger and Cheverud [1982, 1985] on the scaling of sexual dimorphism in body weight and canine size, and thus supports their model which posits selection on body size as the prime mover for the evolution of sexual dimorphism.  相似文献   

8.
In order to test hypotheses about the phylogenetic relationships among living genera of New World monkeys, 1.3 kb of DNA sequence information was collected for two introns of the glucose-6-phosphate dehydrogenase (G6PD) locus, encoded on the X chromosome, for 24 species of New World monkeys. These data were analyzed using a maximum parsimony algorithm. The strict consensus of the three most-parsimonious gene trees that result shows support for the following clades: a pitheciine clade including Callicebus within which Chiropotes and Cacajao are sister taxa, an Alouatta-atelin clade within which Brachyteles is the sister taxon of Lagothrix and which is sister to another clade containing the callitrichines, and a callitrichine/Aotus/Cebus/Saimiri clade. Within the callitrichines, Callimico is the sister taxon of Callithrix. Cebus and Saimiri form a clade. These results are broadly consistent with previously published DNA sequence analyses of platyrrhine phylogeny and provide additional support for groupings provisionally proposed in those earlier studies. Nevertheless, questions remain as to the relative phylogenetic placement of Leontopithecus and Saguinus, the branching order within the Aotus/Cebus/Saimiri/callitrichine clade, and the placement of the pitheciine clade relative to the atelines and the callitrichines.  相似文献   

9.
10.
Evolutionary relationships between New World monkeys and marmoset genera and the place of the Ceboidea within the primates are considered in terms of the immunological specificity of ceboid proteins. Antigenic distances between the New World primates are measured using antisera produced in rabbits to nine ceboid genera: Alouatta, Aotes, Ateles, Callicebus, Cebus, Chiropotes, Lagothrix, Saimiri and Saguinus. A cladogram constructed on the basis of increasing degrees of antigenic distance between branches depicts Ceboidea as a monophyletic assemblage within which Alouatta is grouped with the Atelinae genera, Lagothrix and Ateles, Chiropotes joins Cacajao and Cebus joins Saimiri. The joining of the cebid genera Aotes and Callicebus with callithricid genera Callimico and Saguinus into a single complex lineage suggests that Cebidae is a paraphyletic or polyphyletic taxon. A phylogenetic taxonomy for Platyrrhini is proposed.  相似文献   

11.
Ingram T  Stutz WE  Bolnick DI 《PloS one》2011,6(6):e20782
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity.  相似文献   

12.
Comparisons of hand/wrist radiographs of neonatal Cebus albifrons (n = 14) and Cebus apella (n = 4) with those of Saimiri sciureus boliviensis (n = 9) and Macaca mulatta (n = 63) reveal that the cebid monkeys show much less skeletal ossification at birth than macaques. Differences in gestation time alone cannot account for the differences in skeletal maturity at birth in the two groups of monkeys. The skeletal precocity of the newborn macaques indicates that their ossification either begins earlier in gestation or proceeds at a more rapid rate, or both. This, in turn, raises questions about the timing of organogenesis and gestational comparability in cebid and cercopithecid monkeys. The advanced state of ossification seen in macaques at birth is not typical of other groups of anthropoid primates, including Cebus, Saimiri, Pan and Homo, and may represent an ontogenetic specialization.  相似文献   

13.
Ontogenetic diet shifts in juvenile fishes are sometimes associated with proportional changes to the feeding mechanism. In addition, many piscivorous teleosts transition from invertebrate-prey to fish-prey when the mouth attains a specific diameter. Allometric (disproportionate) growth of the jaws could accelerate a young fish’s ability to reach a critical gape diameter; alternately by opening the lower jaw to a greater degree, a fish might increase gape behaviorally. We investigated the ontogeny of feeding morphology and kinematics in an imperiled piscivore, the Colorado pikeminnow (Ptychocheilus lucius) in a size range of individuals across which a diet shift from invertebrate-prey to prey-fishes is known to occur. We predicted that: (1) the feeding apparatus of the fish would grow proportionally with the rest of the body (isometric growth), that (2) anatomical gape diameter at the known diet transition would be a similar gape diameter to that observed for other piscivorous juvenile fishes (15–20 mm) and (3) feeding kinematic variables would scale isometrically (that is, change in direct proportion to body length) as juvenile pikeminnow became larger. Furthermore, we also asked the question: if changes in feeding morphology and kinematics are present, do the changes in morphology appear to generate the observed changes in kinematics? For juvenile Colorado pikeminnow, the majority of the morphological variables associated with the skull and jaws scale isometrically (that is, proportionally), but seven of eight kinematic variables, including functional gape, scale with negative allometry (that is, they became disproportionately smaller in magnitude). In contrast with the overall trend of isometry, two key aspects of feeding morphology do change with size; the lower jaw of a young Colorado pikeminnow becomes longer (positive allometry), while the head becomes shallower (negative allometry). These findings do not support the hypothesis that morphological ontogenetic changes directly generate changes in feeding kinematics; in fact, allometric jaw growth would, a priori, be expected to generate a larger gape in older fish—which is the opposite of what was observed. We conclude that ontogenetic morphological changes produce a more streamlined cranium that may reduce drag during a rapid, anteriorly directed strike, while concomitant behavioral changes reduce the magnitude of jaw movements—behavioral changes that will facilitate a very rapid opening and closing of the jaws during the gape cycle. Thus, for juvenile pikeminnow, speed and stealth appear to be more important than mouth gape during prey capture.  相似文献   

14.
Newly discovered foot bones of Aegyptopithecus are described and compared to those of Apidium and Dolichocebus. Locomotor adaptations are inferred for African early Oligocene propliopithecids, parapithecids, and for Argentine early Oligocene Dolichocebus. All show an anthropoid grade of development in their foot anatomy. Tarsals of Aegyptopithecus compare best with those of Miocene hominoids. Apidium shares derived calcaneal features that link it with Old World monkeys. Dolichocebus exhibits a very generalized platyrrhine talar morphology akin to that seen in Saimiri, Callicebus, Cebus, and Aotus. The morphology of early Oligocene primate foot bones suggests that at least three quite distinct groups, corresponding to three recognized superfamilies, were present in the early Oligocene of South America and Africa.  相似文献   

15.
Individual morphology and performance are directly or indirectly under the influence of variation in resource levels. To study the effects of different resource conditions and their effects on morphology and ontogenetic reaction norms in young‐of‐the‐year (YOY) perch (Perca fluviatilis), we used three different approaches. First, we examined the morphological trajectories over early ontogeny in relation to lake‐specific resources in a field study. Second, one lake that lacked perch recruitment was stocked with perch eggs from a control lake in a whole‐lake experiment to study ontogenetic reaction norms. Third, we compared the development of YOY perch in the three lakes that mainly inhabited the littoral zone with YOY perch experimentally confined to enclosures in the pelagic zone of the lakes.
Overall body morphology of the YOY perch changed both as a function of size and as a function of diet. As perch increased in size they developed a deeper body morphology corresponding to an increased proportion of benthic macroinvertebrates in their diet. In pelagic enclosures where perch were constrained to feed mainly on zooplankton they had a more fusiform body morphology than perch in the lakes that fed on a mixture of zooplankton and macroinvertebrates. Similarly, the ontogenetic reaction norm of perch was related to the diet and lake‐specific zooplankton levels in the whole‐lake experiment.
In the pelagic enclosures, perch with high growth rates had a more fusiform body morphology than slow‐growing perch, whereas the opposite was found in the lakes, where perch included more macroinvertebrates in their diets. Perch in lakes with a higher proportion of macroinvertebrates in the diet also had deeper body morphology. The opposite morphology – growth rate relationship found between perch in the pelagic versus those using the whole lake suggest a morphological trade‐off between foraging on zooplankton and foraging on macroinvertebrates. Our results suggest that YOY perch show different ontogenetic reaction norms as a function of lake‐specific resource levels, which may allow YOY recruitment to later stages. Our results further suggest that diet‐related changes in morphology are a rapid process.  相似文献   

16.
It has been documented extensively that body size affects the physiology and musculoskeletal function of organisms. However, less well understood is how body size affects the ecology of organisms through its effects on physiology and performance. We explored the effects of body size on morphology and performance in different ontogenetic classes and sexes of a common Anolis lizard ( A. lineatopus ). Next, we tested whether these morphological and performance differences may affect functional aspects of the diet such as prey size and prey hardness. Our data showed that males, females and juveniles differ significantly in head size, head shape and bite force. Multiple regression models indicated that head shape and bite force are significantly correlated to prey size and hardness. Yet juveniles had relatively large heads and bit disproportionately hard for their size, allowing them to eat prey as large as those of females. However, for a given prey size, males and females ate more robust prey than did juveniles. Additionally, males ate relatively harder prey than did juveniles. These data suggest that: (1) body size affects the dietary ecology of animals through its effect on head size and bite force; (2) changes in head morphology independent of changes in overall size also have important effects on performance and diet.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 443–454.  相似文献   

17.
Morphological features of the jaws and teeth are examined in eight species of platyrrhine monkeys that coexist in the Suriname rainforest. Z-scores calculated from geometric predictions for several features of the feeding apparatus thought to have some functional significance (e. g., tooth dimensions, jaw robusticity, leverage of primary jaw elevators) are compared to a profile of the naturalistic dietary behavior of these species (i. e., proportions of fruit mesocarp, seeds, leaves, and fauna eaten). Several features are found exclusively in those platyrrhines whose dietary preferences are the most limited. Such specializations appear to be associated with a particular protein source exploited by a species to supplement a largely frugivorous diet. Ateles paniscus, which feeds primarily on the mesocarp of ripe fruit, has an adaptive morphology that emphasizes broad incisors. Chiropotes satanas (and to a slightly lesser extent, Pithecia pithecia) is a frugivore/seed predator with large upper and lower canines and a robust mandible. The frugivore/folivore Alouatta seniculus has a relatively large total molar area and effective mandibular condyle height. In all four of these strictly vegetarian species, the leverage of the masseter muscle is greater than that of temporalis. Of the omnivorous species, Cebus apella and C. nigrivittatus exploit both fauna and seeds for protein and exhibit an array of many of the above features, such as large teeth and thick mandibles. Saimiri sciureus, not particularly known for seed predation, departs from Cebus in having less robust canines and a more gracile mandible. All three cebid omnivores have a temporalis with greater leverage than the masseter, indicating a requirement for resisting anteriorly directed forces, for example, using the jaws for vigorous foraging. The lack of any enlarged features, other than incisors, in the omnivorous Saguinus midas may be attributable to the functional constraints of small body size. Because the small size of the gape limits the size of the food parcel ingested, a requirement to enlarge other dentomandibular structures for trituration is alleviated.  相似文献   

18.
Behavior varies among individuals and is flexible within individuals. However, studies of behavioral syndromes and animal personality have demonstrated that animals can show consistency in their behavior and as such may be restricted in their behavioral responses. Like any other trait, including morphology, performance, or physiology, personality is now considered an important component of ecology and may have fitness consequences. Moreover, in some species personality correlates with other traits, as predicted in the context of a recent theoretical framework postulating that individual differences in growth and body size can affect behavior through effects on growth–mortality tradeoffs. This “pace of life” hypothesis predicts that animals that explore more should be larger and have higher growth rates than those that explore less. We tested for associations between morphology and a behavioral trait in a captive colony of gray mouse lemurs (Microcebus murinus). We used open-field tests to evaluate exploration behavior and measured a series of morphological traits in 72 individuals (32 males and 40 females). Our results show that the latency to start exploring correlates positively with adult body size and body weight at birth. These data provide evidence for a link between morphology and behavior in this species, thus supporting predictions of dispersal models but diverging from the predictions of the “pace of life” model.  相似文献   

19.
A scapular fragment from the Upper Fossil Wood Zone, Quarry I, Fayum Depression, Egypt, is assigned to the taxon Apidium phiomense. This animal may have approximated the size of Galago crassicaudatus or Nycticebus coucang, as predicted by regressing body weight on glenoid surface area and fossa length for an assortment of living primates. Morphometric values for spinoglenoid, axilloglenoid, and axillospinal angles indicate locomotor affinities of A. phiomense with colobine monkeys. Other nonmetric traits align the fossil with Saimiri sciureus, probably its closest behavioral analogue. A. phiomense is thus characterized as an arboreal quadruped with a locomotor repertoire that includes a considerable amount of leaping and the use of forelimbs for clinging and/or suspending during landing.  相似文献   

20.
The endangered but poorly studied southern bearded saki, Chiropotes satanas, faces extremes of habitat fragmentation throughout its geographic range in eastern Amazonia. This article focuses on the behavior of the members of two groups--a large one (30-34 members) in continuous forest (home range=69 ha) and a much smaller one (7 members) on a 17-ha man-made island--at the Tucuruí Reservoir on the Tocantins River. Quantitative behavioral data were collected through scan and all-events sampling. Both groups were characterized by the fission-fusion pattern of social organization typical of the genus and relatively high rates of traveling and feeding, also characteristic of the genus. However, the island group spent significantly more time resting and significantly less traveling than the mainland group, presumably as a function of its much smaller home range. Despite resting more, island group members engaged in significantly less social interaction, possibly because of the much smaller size of this group (which also affected visibility), or other factors, such as nutritional stress. Affiliative associations of males were a mainstay of social behavior in both groups and interspecific associations with capuchins (Cebus apella) and squirrel monkeys (Saimiri sciureus) were relatively common, especially in the mainland group. Overall, the island group presented a relatively reduced behavioral repertoire, apparently reflecting factors such as group size and the size and quality of its home range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号