首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compartmentalization of the epidermal growth factor (EGF) receptors in A-431 cells was studied using centrifugation of the microsomal fraction of these cells in continuous Percoll gradient. The existence of an intact (non-degraded) EGF receptor in plasma membrane and endosome fraction was demonstrated by electrophoretic analysis of in vitro phosphorylated Percoll fractions. No phosphorylated receptor was revealed in lysosomal fraction by this method. The existence of non dissociated EGF-receptor complexes in intracellular compartments 30 minutes after the start of internalization was proven using a synthesized photoreactive labeled EGF derivative (125I-EGF-SANAH). The removing of pH gradient in organellar membranes by 10 mkM of monensin did not affect dissociation from its receptor. The data obtained proved the existence of non-dissociated and non-degraded EGF-receptor complexes in the endosomal compartment of A-431 cells.  相似文献   

2.
We have prepared several electron and light microscopic labels of epidermal growth factor (EGF) to analyse the morphologic features of its binding and internalization by cultured cells. These include a ferritin conjugate of EGF, a covalent conjugate of EGF and horseradish peroxidase (EGF-HRP), a colloidal gold marker system using EGF-HRP as a primary antigen, and a covalent complex of EGF with rhodamine-labelled lactalbumin. All of the light and electron microscopic labels showed similar patterns of binding. EGF initially bound to diffusely distributed cell surface receptors at 4 degrees C. The EGF-receptor complexes clustered into clathrin-coated pits on the cell surface only when the temperature was raised to 37 degrees C. In KB and Swiss 3T3 cells, this was followed by rapid internationalization into receptosomes, compartmentalization into the Golgi system, clustering in the clathrin-coated regions of the Golgi, and finally delivery into lysosomes from the Golgi. This general pathway was seen in Swiss 3T3 cells which have a low number of EGF receptors, KB cells which have a moderate number of receptors and A431 cells that have a high number of receptors. However, the ruffling activity induced in A431 cells by EGF produced some internalization through macropinosomes, making the pathway of entry more difficult to evaluate. Double label experiments showed that EGF is internalized together with alpha 2-macroglobulin and adenovirus particles. These data clarify the route of entry of EGF in different cell types using multiple labels, and shows that it enters cells through the same coated pit entry pathway as most other ligands previously examined.  相似文献   

3.
The transferrin (Tf) receptor is a major transmembrane protein which provides iron for normal and malignant cell growth. Epidermal growth factor (EGF) has been reported to rapidly and transiently alter the number of surface Tf receptors in normal and transformed epithelial cells. To investigate mechanisms of EGF-induced changes in surface Tf display, EGF effects on surface Tf receptors were compared in two cell lines which differ in their number of EGF receptors and growth responses to EGF. In cloned A431 cells with high receptor numbers which are growth-inhibited by EGF, EGF caused a 50% decrease in Tf receptor expression after 30 min. In contrast, EGF induced a rapid, transitory increase (within 5 min) in the number of surface Tf receptors on KB carcinoma cells which returned to basal levels by 15 min. The observed changes in Tf receptor display were due to altered receptor distribution and not changes in ligand affinity or total cellular transferrin receptor pools. Anti-EGF receptor monoclonal antibody blocked effects of EGF on transferrin receptor expression. Since the antibody is internalized and causes EGF receptor down-regulation, effects on transferrin receptor expression were independent of these events. EGF-induced alterations in Tf receptor display occurred even when cells were pretreated with colchicine, suggesting that changes in surface Tf binding were not mediated by cytoskeletal components. Na orthovanadate, which mimics some early cellular effects of EGF, duplicated EGF's effects on A431 Tf receptors, but had no effect on KB cells, suggesting these responses occur by differing mechanisms. To determine whether EGF caused changes in Tf receptor phosphorylation, 32P-labelled Tf receptors were immunoprecipitated after EGF treatment. After exposure to EGF, A431 cells showed no change in Tf phosphorylation, but KB cells showed a transient, 6-fold increase in transferrin receptor phosphorylation on serine residues. In both A431 and KB cells, phorbol ester (PMA) also increased phosphorylation on transferrin receptors, but had little effect on surface Tf receptor expression. In malignant cell lines, EGE induces rapid, variable changes in transferrin receptor expression and phosphorylation which differ from the effects of PMA. These early responses to EGF appear to differ with the cell type and correlate poorly with alterations in Tf receptor phosphorylation. These results suggest Tf receptor phosphorylation does not regulate Tf receptor display in all cells.  相似文献   

4.
Rat pheochromocytoma cells (clone PC12) possess functional surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells respond to NGF as well as to dibutyryl cyclic AMP (dbcAMP) by arrest of cell proliferation and initiation of morphological differentiation, while EGF acts as a mitogen. Exposure of PC12 cells to NGF for several days resulted in a complete loss of rapid EGF responses, such as membrane ruffling and activation of active K+ transport. EGF binding studies revealed that this loss of EGF responses was due to an almost complete reduction of the number of EGF binding sites. In contrast, exposure of PC12 cells to dbcAMP for 2 days did not affect the rapid EGF responses, despite the morphological differentiation. Moreover, EGF binding studies demonstrated a twofold increase in the number of high-affinity binding sites and a small increase in the number of low-affinity sites. In addition, exposure of the cells to dbcAMP caused a twofold increase of EGF-receptor phosphotyrosine kinase activity. These results indicate that neither EGF-binding or the presence of EGF receptors nor the rapid EGF responses are sufficient for persistent proliferation, on one hand, or sufficient to avoid morphological differentiation, on the other.  相似文献   

5.
Human epidermoid carcinoma A431 cell clones have been obtained whose growth is inhibited, stimulated, or unaffected by epidermal growth factor (EGF). In clones exhibiting each type of growth response, EGF induced similar morphologic changes consisting of aggregation of cells into dense clusters with baring of large areas of the culture dish. The similarity of the clones' morphologic responses, despite their differing growth responses, indicates that the effects of EGF on morphology are distinct from effects on growth. Cells whose growth was inhibited by EGF contained high numbers of EGF receptors, whereas the concentration of EGF receptors was reduced in cells whose growth was stimulated or unaffected by EGF. There were, however, no consistent differences in EGF receptor concentrations between stimulated or null clones. Cells that exhibited each type of growth response displayed similar rates of EGF binding to receptors, rates of internalization of EGF, and rates and extent of EGF-induced receptor down-regulation. Changes in EGF-stimulated tyrosine-specific protein kinase activity paralleled changes in EGF receptors, both between clones and upon down-regulation. These studies indicate that a reduction in the concentration of EGF receptors in A431 cells allows escape from the growth inhibitory effects of EGF, but suggest that the pattern of growth response depends on biochemical events subsequent to EGF-receptor metabolism and activation of tyrosine-specific protein kinase.  相似文献   

6.
The monoclonal antibody to the epidermal growth factor (EGF) receptor was generated after fusion of PAI myeloma cells with immunized BALB/c mouse spleen cells, using intact A431 epidermoid carcinoma cells as an immunogen. The antibody, denoted 5A9, is an IgG, which recognizes a protein with molecular mass 170 kDa during immunoblot analysis, immunoprecipitates phosphoprotein with molecular mass 170 kDa from the membrane preparations of A431 cells, and, according to immunofluorescence experiments, is distributed in the cell similar to the EGF-rhodamine conjugate. It is concluded that the produced antibodies are specific to EGF-receptor. At the same time the 5A9 (50 nM) do not compete with EGF for binding with high and low affinity receptors. They fail to induce internalization of the EGF-receptor and do not exert influence on intracellular degradation of EGF-receptor. Monoclonal antibodies 5A9 are also unable to inhibit the EGF-induced protein kinase activity of the receptor and do not stimulate protein kinase activity by themselves. Thus, the prepared monoclonal antibodies can be used to register the EGF-receptor cellular localization without affecting biologic activity of the receptor.  相似文献   

7.
The effects of vitamin K3, quinones, fat-soluble vitamins, and various naturally occurring and synthetic compounds on the binding of 125I-epidermal growth factor (EGF) to mink lung cells or murine 3T3 cells in culture were studied. Vitamin K3, but not other fat-soluble vitamins, markeldy inhibits the binding of 125I-labeled EGF to treated cells, but does not affect the binding of insulin, concanavalin A, alpha-2-macroglobulin, and murine leukemia virus glycoprotein, gp70, to their membrane receptors. The binding of multiplication stimulating activity to treated cells is also reduced to some extent. Vitamin K3 alters the affinity of the receptors for EGF without changing the total number of available receptors per cell. Vitamin K3 modulation of EGF-receptor interaction is a temperature- and time-dependent phenomenon. EGF-receptor interaction is also significantly modulated by 1,4-naphthoquinone, 1,4-benzoquinone, and phenanthrenequinone but not by other quinones of anthracyclic antibiotics.  相似文献   

8.
Sustained activation of most G protein-coupled receptors causes a time-dependent reduction of receptor density in intact cells. This phenomenon, known as down-regulation, is believed to depend on a ligand-promoted change of receptor sorting from the default endosome-plasma membrane recycling pathway to the endosome-lysosome degradation pathway. This model is based on previous studies of epidermal growth factor (EGF) receptor degradation and implies that receptors need to be endocytosed to be down-regulated. In stable clones of L cells expressing beta(2)-adrenergic receptors (beta(2)ARs), sustained agonist treatment caused a time-dependant decrease in both beta(2)AR binding sites and immuno-detectable receptor. Blocking beta(2)AR endocytosis with chemical treatments or by expressing a dominant negative mutant of dynamin could not prevent this phenomenon. Specific blockers of the two main intracellular degradation pathways, lysosomal and proteasome-associated, were ineffective in preventing beta(2)AR down-regulation. Further evidence for an endocytosis-independent pathway of beta(2)AR down-regulation was provided by studies in A431 cells, a cell line expressing both endogenous beta(2)AR and EGF receptors. In these cells, inhibition of endocytosis and inactivation of the lysosomal degradation pathway did not block beta(2)AR down-regulation, whereas EGF degradation was inhibited. These data indicate that, contrary to what is currently postulated, receptor endocytosis is not a necessary prerequisite for beta(2)AR down-regulation and that the inactivation of beta(2)ARs, leading to a reduction in binding sites, may occur at the plasma membrane.  相似文献   

9.
10.
NRK fibroblasts exposed to transforming growth factor-beta (TGF-beta) show increased binding of radiolabeled epidermal growth factor (EGF) relative to untreated cells. The binding of another growth factor, rat insulin-like growth factor-II, is unaffected. The increase in EGF binding induced by TGF-beta is not due to inhibition of EGF processing nor to an alteration in the affinity of plasma membrane EGF receptors. However, treatment of the cells with TGF-beta does cause a rapid increase in the number of plasma membrane receptors for EGF. TGF-beta has little effect on the rate of overall protein synthesis, but the increase it induces in EGF binding can be completely inhibited by cycloheximide and tunicamycin. Thus a selective synthetic mechanism underlies TGF-beta action. Cells incubated with TGF-beta also show altered down regulation of their EGF receptors in response to the ligand; concentrations of EGF that can induce strong biological responses no longer decrease the plasma membrane receptor level below the basal state. These results agree well with the known specificity and synergism of the interaction between TGF-beta and EGF. Moreover, they describe a mechanism of growth control in which bioactive peptides act coordinately through a regulatory effect on the number of cell-surface receptors.  相似文献   

11.
Cultured NIH-3T3 cells devoid of endogenous EGF-receptors were transfected with cDNA constructs encoding normal human EGF-receptor and with a construct encoding an insertional mutant of the EGF-receptor containing four additional amino acids in the kinase domain after residue 708. Unlike the wild-type receptor expressed in these cells which exhibits EGF-stimulatable protein tyrosine kinase activity, the mutant receptor lacks protein tyrosine kinase activity both in vitro and in vivo. Despite this deficiency the mutant receptor is properly processed, it binds EGF and it exhibits both high and low affinity binding sites. Moreover, it undergoes efficient EGF-mediated endocytosis. However, EGF fails to stimulate DNA synthesis and is unable to stimulate the phosphorylation of S6 ribosomal protein in cells expressing this receptor mutant. Hence, it is proposed that the protein tyrosine kinase activity of EGF-receptor is essential for the initiation of S6 phosphorylation and for DNA synthesis induced by EGF. However, EGF-receptor processing, the expression of high and low affinity surface receptors and receptor internalization, require neither kinase activity nor receptor autophosphorylation. Interestingly, phorbol ester (TPA) fails to abolish the high affinity state and is also unable to stimulate the phosphorylation of this receptor mutant. This result is consistent with the notion that kinase-C phosphorylation of EGF-receptor is essential for the loss of high affinity EGF-receptors caused by TPA.  相似文献   

12.
The plasma membrane ultrastructural changes after the action of epidermal growth factor were studied in A-431 cells using freeze-fracture methods. The incubation with EGF (100 ng/ml, 0 degree C, 60 min) led to a decrease in density of intramembrane particles on the P surface of ventral cell membrane, while the number of coated pits increased there. The revealed effects of EGF may be related to direct consequences of EGF-receptor complex formation, because all the temperature dependent steps of its processing were blocked. The data obtained testify to an active involvement of the membrane ventral surface in the formation of cell response towards growth factors.  相似文献   

13.
Regulation of cell proliferation by epidermal growth factor   总被引:27,自引:0,他引:27  
Epidermal Growth Factor (EGF) is a 6045 dalton polypeptide which stimulates the proliferation of various cell types in vitro and in vivo. EGF binds to diffusely distributed membrane receptors which rapidly cluster primarily on coated pits areas on the plasma membrane. Subsequently, the EGF-receptor complexes are endocytosed and degraded by lysosomal enzymes. The lateral diffusion coefficient (D) of EGF-receptor complexes on cultured cells increases gradually from D = 2.8 X 10(-10) cm2/sec at 5 degrees C to 8.5 X 10(-10) cm2/sec at 37 degrees C. In the same range of temperature the rotational correlation times change from 25 to 50 microseconds to approximately 350 microseconds. Hence, at 4 degrees C, the occupied EGF receptors translate and rotate rapidly in the plane of the membrane. At 37 degrees C, EGF receptors form microclusters composed of 10 to 50 molecules. Moreover, it is concluded that both at 4 degrees C and 37 degrees C lateral diffusion of the occupied receptors is not the rate determining step for either receptor clustering or internalization. EGF receptor is a 150,000 to 170,000 dalton glycoprotein. The receptor is in close proximity to an EGF-sensitive, cAMP-independent, tyrosine-specific protein kinase which also phosphorylates the receptor molecules itself. The EGF sensitive kinase is similar to the kinase activity which is associated with certain RNA tumor viruses. The fact that the non-mitogenic cyanogen-bromide cleaved EGF is as potent as native EGF in stimulating phosphorylation suggests that EGF-induced, protein phosphorylation is a necessary but insufficient signal for the induction of DNA synthesis by EGF. EGF receptor serves also as the binding site for Transforming Growth Factors (TGF) which compete with EGF and induce anchorage-independent growth of normal cells in soft agar. Tumor promoters such as phorbol ester effect the binding of EGF to its membrane receptors and its ability to stimulate DNA synthesis. EGF itself has also some tumor promoting activity. Hence, the membrane receptor for EGF seems to participate in the regulation of normal and neoplastic growth. Monoclonal antibodies against EGF receptor (IgM) induce various early and delayed effects of EGF, while their monovalent Fab' fragments are devoid of biological activity. These observations support the notions that EGF receptor rather than EGF itself is the active moiety and that the role of the hormone is to perturb the receptor in the appropriate way, probably by inducing the microaggregation of EGF receptors.  相似文献   

14.
Synthetic compounds called tyrphostins were examined for their effects on cells which are mitogenically responsive to epidermal growth factor (EGF). We studied in detail the effects of two tyrphostins on EGF binding, tyrosine phosphorylation in intact cells, EGF-receptor internalization, and mitogenesis. These compounds inhibited EGF-stimulated [3H]thymidine incorporation in a specific manner and the degree of selectivity varied. Both compounds inhibited EGF-stimulated receptor autophosphorylation and tyrosine phosphorylation of endogenous substrates in intact cells at doses that correlated with the IC50 for [3H] thymidine incorporation. These results are consistent with the notion that tyrosine phosphorylation is a crucial signal in transduction of the mitogenic message delivered by EGF. The compound RG50864 demonstrated specificity at inhibiting EGF-stimulated cell growth compared with stimulation with either platelet-derived growth factor or serum. For both compounds RG50864 and RG50810, long term exposure (16 h) of cells to tyrphostins was required for optimal inhibition because of the instability and slow action of these compounds. Tyrphostins did not alter cell surface display of EGF-receptor, EGF binding or EGF-induced internalization, degradation, and down-regulation of EGF receptors. These novel synthetic inhibitors, specific for EGF-receptor kinase, offer a new method to inhibit EGF-stimulated cell proliferation which may be useful in treating specific pathological conditions involving cellular proliferation, including different types of cancers.  相似文献   

15.
A murine monoclonal antibody (No. 425) raised against human A431 carcinoma cells specifically immunoprecipitates the 170,000 molecular weight epidermal growth factor (EGF)-receptor from extracts of A431 cells as well as from extracts of human placenta and cultured fibroblasts, but does not recognize the murine receptor. Binding to the external domain of the human EGF-receptor was indicated by indirect immunofluorescent staining of fixed nonpermeable cells. The antibody binds to both glyco- and aglycoreceptor forms, indicating that the epitope is a part of the polypeptide chain. Binding of the antibody to the receptor is conformation dependent; i.e., denatured receptors lacking EGF-binding activity are not recognized by the antibody. The results of antibody binding studies indicate that the epitope is closely linked to the EGF binding active site, and is common to both high- and low-affinity EGF-receptors. Interaction of this epitope with the antibody inhibits EGF binding and bioactivity, and triggers receptor down-regulation, but does not generate EGFlike kinase-stimulatory or mitogenic responses either in vitro or in vivo. The antibody was tested for its ability to bind to domain-sized fragments of the 170-kDa EGF-receptor. It can recognize both the proteolytically generated 110-kDa EGF binding peptide, and a soluble 100-kDa EGF-receptor secreted by A431 cells. This indicates that the epitope recognized this antibody retains its conformation after proteolytic separation of the EGF binding domain from the rest of the receptor molecule.  相似文献   

16.
The endocytosis and intracellular fate of epidermal growth factor (EGF) were studied in A431 cells. After 15-20 min of internalization at 37 degrees C, rhodamine-labeled EGF (EGF-Rh) accumulated into large juxtanuclear compartment consisting of closely related vesicles. This structure was shown to be localized in the para-Golgi region. Fluorescein-labeled transferrin (Tr-FITC) was observed in the same region when added to the cells simultaneously with EGF-Rh. Using microscope spectrofluorometer, we determined that the Tr-FITC-containing para-Golgi structures have a pH of 6.1 +/- 0.3 while lysosomes containing dextran-fluorescein have a pH of 5.0 +/- 0.2. To study the dynamics of EGF-receptor dissociation during endocytosis a mild detergent treatment of living cells was used for extraction of an intracellular receptor-unbound EGF. During the first hour of internalization at 37 degrees C, neither significant dissociation of EGF-receptor complexes nor EGF degradation was observed. After 3 h of endocytosis, the percentage of unbound EGF increased to 55% of the total internalized EGF. These results suggest that EGF remains associated with receptors during endocytosis in A431 cells until it is transferred to lysosomes where the pH of the EGF microenvironment is dropped to 5. A prolonged presence of EGF-receptor complexes in the para-Golgi region might be of importance in mitotic signaling.  相似文献   

17.
Parameters of EGF-receptor complex endocytosis have been studied in the early and late G1 phase and in mitosis. As a model, mouse mammary epithelial cells HC11 were used, whose growth depends on EGF presence in the medium. The Scatchard analysis has demonstrated that the surface receptors are represented by two receptor populations: 4800 high affinity (KD = 10(-11) M) receptors, and 73,000 low affinity (KD = 4.10(-9) M) receptors. Incubation of cells with the growth factor (5 ng/ml) resulted in a decrease in 125I-EGF binding, with its level being low until entering the S-phase. Under these conditions, receptors disposed on the plasma membrane presented a homogeneous population (KD = 8.10(-11) M, 14,000 receptors per cell). No reliable difference was revealed between the EGF-receptor complexes, internalized in early and late G1 phases, in respect to the internalization rate, level of recycling, degradation, and dynamics of compartmentalization. However, endocytosis of EGF-receptor complexes was found to be completely blocked in mitosis at the stage of internalization.  相似文献   

18.
Mouse monoclonal antibodies to the human epidermal growth factor (EGF) receptor were raised by immunizing with plasma membrane vesicles prepared from A431 cells. This paper describes the characterization of one of the IgG anti-receptor monoclonal antibodies generated and its use to probe the role of transforming growth factor (TGF) in the autonomous growth of a melanoma cell line in culture. This antibody blocks: 1) the binding of 125I-EGF to the A431 EGF receptor; 2) the EGF stimulation of the EGF-dependent protein kinase in vitro; and 3) human fibroblast DNA synthesis and proliferation in culture. It can precipitate the EGF receptor from metabolically labeled A431 cells and human fibroblasts and these receptors have indistinguishable peptide maps. No EGF receptor could be detected by immunoprecipitation after fibroblasts were treated with EGF or conditioned medium from the melanoma cells which secrete EGF-like TGF (alpha TGF). The antibody itself did not down-regulate the receptor but could block down-regulation caused by EGF and alpha TGF. Despite its ability to block EGF-stimulated growth and down-regulation in fibroblasts, the antibody was unable to block the growth and soft agar colony formation of alpha TGF-secreting melanoma cells, nor could the antibody detect EGF receptor in these cells under the conditions developed to prevent down-regulation and lysosomal degradation of the EGF receptor. These studies suggest that these melanoma cells do not have the intact EGF receptor and that the secretion of alpha TGF by these cells plays no role in their growth in culture. The absence of receptor cannot be explained by down-regulation by secreted alpha TGF.  相似文献   

19.
The number of surface EGF receptors as well as their internalization rate and biosynthesis were analyzed in hepatocytes freshly isolated from control, streptozotocin-diabetic, and insulin-treated diabetic rats. All three parameters were decreased in diabetic animals and values were corrected by insulin treatment. Moreover, the inhibition of synthesis was specific for the EGF receptor since the other biosynthetically labeled proteins were not affected. These data demonstrate that the reduced number of hepatocyte surface EGF receptors results from an inhibition of EGF-receptor synthesis which is not compensated by a reduced internalization rate.  相似文献   

20.
In animals a pharmacological doses of the growth-promoting peptide epidermal growth factor (EGF) has an effect on the growth and/or maturation of several organs such as the lung, the kidney, the liver and the gastrointestinal tract. Since EGF elicits its function via binding to specific cellular receptors the presence of these receptors predicts a possible physiological role for EGF and EGF agonists. We have studied the presence of the EGF-receptor on human fetal membrane preparations from the kidney, the liver, the lung and the placenta (gestational age 13-20 weeks). The 4 membrane preparations all bind labeled EGF thus allowing us to calculate the apparent affinity constant and the number of receptors present per mg of membrane protein. The apparent affinity constant (gestational age 13-20 weeks) varies between 0.5 and 3.5 X 10(9) mol-1, median 1.3 X 10(9) mol-1 (n = 40). No difference is observed for the 4 tissues examined, and no difference is found as a function of the gestational age. The number of receptors present per mg of membrane protein (gestational age 16-20 weeks) are (range and (median) 90-220 (130) fmol, n = 10 for the kidney, 80-480 (250) fmol, n = 9 for the liver, 90-690 (300) fmol, n = 10 for the lung, and 2100-4200 (3400) fmol, n = 7 for the placenta. Results for a fetus of gestational age 13 weeks show high values for kidney receptors (240 fmol) and lung receptors (800 fmol) and low values for the placenta receptors (410 fmol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号