首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male rodents were studied before and after undergoing one of three treatment conditions for 9 days: 1) cage control (n = 15, CON), 2) horizontal suspension (n = 15, HOZ), and 3) head-down suspension (n = 18, HDT). Testing included measurements of maximal O2 uptake (VO2 max) and select cardiovascular responses to graded treadmill exercise. VO2 max expressed on an absolute basis (ml/min) was significantly decreased after HOZ (-14.1 +/- 2.5%) and HDT (-14.3 +/- 2.0%), while being essentially unchanged in CON (-1.0 +/- 3.3%). Significant reductions in body weight were observed after both HOZ (-10.1 +/- 4.2 g) and HDT (-22.5 +/- 3.3 g), whereas CON animals exhibited a significant increase in weight (10.4 +/- 3.8 g). As a result, when VO2 max was normalized for body weight, all groups exhibited similar significant reductions of 6-7%. Although no differences in heart rate and blood pressure response to graded exercise were observed, the HDT group exhibited greater increases in mesenteric resistance at the same absolute exercise intensity. Furthermore, both suspended groups had higher iliac resistance values during exercise at similar relative exercise conditions, suggesting that muscle blood flow during treadmill running may have been reduced after suspension. In general, the decrements associated with the HOZ and HDT conditions were similar. It was concluded that reduction in exercise capacity and altered cardiovascular responses to exercise observed after 6-9 days of suspension were attributable to a combination of hypokinesia, lack of hindlimb weight bearing, or restraint, rather than to hydrostatic influences associated with HDT.  相似文献   

2.
Maximum oxygen consumption (VO2max) has been shown to be reduced after periods of simulated weightlessness. To assess the role of the sympathetic nervous system in these reductions, Sprague-Dawley rats were either chemically sympathectomized (SYMX) or injected with saline (SHAM) and assigned to head-down suspension (HDS), horizontal restraint with the hindlimbs weight bearing (HWB), or cage-control (CC) conditions. VO2max, run time (RT), and mechanical efficiency (ME) were measured before suspension and on days 7 and 14. Male and female SHAM HDS groups exhibited reduced measures of VO2max (12-13%) after 7 and 14 days, and this decrease was attenuated in the SYMX and HWB rats. HDS resulted in a significant reduction in RT (9-15%) in both the male and female rats, and ME was significantly reduced after HDS in male and female SYMX and male SHAM rats (23-33%) but not in the female SHAM rats. Lesser reductions in ME were observed in the HWB rats. HDS and HWB were associated with lower body, fat-free, and fat masses, which were similar in male and female rats as well as for the SHAM and SYMX conditions. In a related HDS experiment with normal rats, plasma norepinephrine and epinephrine were increased by 53 and 42% after 7 days, but only epinephrine returned to baseline after 14 days. It was concluded that chemical sympathectomy and/or a weight-bearing stimulus will attenuate the loss in VO2max associated with simulated weightlessness in rats despite similar changes in body mass and composition. The mechanism(s) remains unclear at this time.  相似文献   

3.
Exposure to microgravity in humans causes cardiovascular deconditioning affecting blood pressure, heart rate and vascular responsiveness. This study investigated cardiac output, arterial blood pressure and regional blood flows [radioactive microspheres: 57Co, 15.5 (SEM 0.1) μm in diameter] in conscious and freely moving rats subjected to 14 days of simulated microgravity (head-down suspension, HDS) in male Wistar rats: control (horizontally attached, n = 7), suspended for 14 days (n = 8) and suspended/allowed to recover for 10 min (R10min, n = 5) or 24 h (n = 9). Compared to the control group, 14 days of HDS resulted in reduced total peripheral resistance (37%); an increased cardiac index (65%) was associated with no significant change in the mean arterial pressure . There were elevated brain (63%), visceral (>20%), hindlimb (>80%) and forelimb (>215%) muscle blood flows. In the R10min group, the decreased (18%) and the regional blood flows returned to control values. Within 24 h the as well as cardiac index and total peripheral resistance were restored. In conclusion, 14 days of HDS engendered local circulatory changes resulting in transient blood pressure instability during recovery. Accepted: 26 March 1998  相似文献   

4.
The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of head-down tilt (HDT) or non-head-down tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approximately 20% (P < 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approximately 10%. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P < 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained unchanged. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.  相似文献   

5.
Previous work has shown that orthostatic hypotension associated with cardiovascular deconditioning results from inadequate peripheral vasoconstriction. We used the hindlimb-unloaded (HU) rat in this study as a model to induce cardiovascular deconditioning. The purpose of this study was to test the hypothesis that 14 days of HU diminishes vasoconstrictor responsiveness of mesenteric resistance arteries. Mesenteric resistance arteries from control (n = 43) and HU (n = 44) rats were isolated, cannulated, and pressurized to 108 cm H(2)O for in vitro experimentation. Myogenic (intralumenal pressure ranging from 30 to 180 cm H(2)O), KCl (2-100 mM), norepinephrine (NE, 10(-9)-10(-4) M) and caffeine (1-20 mM) induced vasoconstriction, as well as the temporal dynamics of vasoconstriction to NE, were determined. The active myogenic and passive pressure responses were unaltered by HU when pressures remained within physiological range. However, vasoconstrictor responses to KCl, NE, and caffeine were diminished by HU, as well as the rate of constriction to NE (C, 14.8 +/- 3.6 microm/s vs. HU 7.6 +/- 1.8 microm/s). Expression of sarcoplasmic reticulum Ca(2+)ATPase 2 and ryanodine 3 receptor mRNA was unaffected by HU, while ryanodine 2 receptor mRNA and protein expression were diminished in mesenteric arteries from HU rats. These data suggest that HU-induced and microgravity-associated orthostatic intolerance may be due, in part, to an attenuated vasoconstrictor responsiveness of mesenteric resistance arteries resulting from a diminished ryanodine 2 receptor Ca(2+) release mechanism.  相似文献   

6.
Cardiovascular deconditioning reduces orthostatic tolerance. To determine whether changes in autonomic function might produce this effect, we developed stimulus-response curves relating limb vascular resistance, muscle sympathetic nerve activity (MSNA), and pulmonary capillary wedge pressure (PCWP) with seven subjects before and after 18 days of -6 degrees head-down bed rest. Both lower body negative pressure (LBNP; -15 and -30 mmHg) and rapid saline infusion (15 and 30 ml/kg body wt) were used to produce a wide variation in PCWP. Orthostatic tolerance was assessed with graded LBNP to presyncope. Bed rest reduced LBNP tolerance from 23.9 +/- 2.1 to 21.2 +/- 1.5 min, respectively (means +/- SE, P = 0.02). The MSNA-PCWP relationship was unchanged after bed rest, though at any stage of the LBNP protocol PCWP was lower, and MSNA was greater. Thus bed rest deconditioning produced hypovolemia, causing a shift in operating point on the stimulus-response curve. The relationship between limb vascular resistance and MSNA was not significantly altered after bed rest. We conclude that bed rest deconditioning does not alter reflex control of MSNA, but may produce orthostatic intolerance through a combination of hypovolemia and cardiac atrophy.  相似文献   

7.
The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint), and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient.  相似文献   

8.
Cardiovascular deconditioning, sometimes manifested in astronauts during standing postflight, may be related to the impairment of autonomic function and/or excessive production of endothelium-dependent relaxing factors. In the present study, we examined the cardiovascular responses to 7-day 30 degrees tail-suspension and a subsequent 6-h post-suspension period in conscious male Sprague-Dawley rats to determine the role of prostacyclin in the observed post-suspension reduction in mean arterial pressure (MAP). The specific prostacyclin synthase inhibitor U-51605 (0.3 mg/kg), or saline, was administered intravenously prior to release from suspension and at 2 and 4 h post-suspension. During 7 days of suspension, MAP did not change, however, there was a post-suspension reduction in MAP which was associated with significant increases in plasma prostacyclin and nitric oxide. U-51605 attenuated the observed post-suspension hypotension and reduced plasma prostacyclin levels, but not nitric oxide levels. The baroreflex sensitivity for heart rate was modified by U-51605: increased MAP threshold and effective MAP range. Thus, the post-suspension reduction in mean arterial pressure may be due to overproduction of prostacyclin and/or other endothelium-dependent relaxing factors and alteration in baroreflex activity.  相似文献   

9.
Mature male rats (n = 16) were assigned to either 14 days of head-down suspension with one hindlimb supported (HDS) or to control cages (C) of similar dimensions. Hindlimb support during HDS preserved the muscle mass-to-body mass ratio (mg/100g) compared with C conditions for the soleus (48.3 +/- 1.0 to 41.7 +/- 1.0), plantaris (98.4 +/- 3.4 to 103.3 +/- 4.1), and gastrocnemius (484.7 +/- 18.5 to 507.2 +/- 13.9). However, the muscle mass-to-body mass ratio was significantly lower for the soleus (28.9 +/- 1.5), plantaris (83.9 +/- 3.6), and gastrocnemius (411.9 +/- 24.2) muscles from the freely hanging hindlimbs compared with the contralateral muscles from the supported hindlimbs or muscles from C animals. Citrate synthase activity (mumol.g-1.min-1) was significantly lower in soleus muscles from HDS rats in both the supported (19.4 +/- 2.3) and freely hanging (20.0 +/- 1.6) hindlimbs compared with C (28.5 +/- 3.1), whereas soleus muscle glycogen concentration (mg/g) was significantly higher in the freely hanging limbs from HDS rats (5.90 +/- 0.31) but not in the supported limbs (3.80 +/- 0.61) compared with C (4.34 +/- 0.50). Doppler flow probes were used to determine that iliac blood flow to freely hanging hindlimbs was significantly decreased after 48 (-19 +/- 5%) and 72 (-20 +/- 6%)h of HDS compared with presuspension values. In addition, iliac vascular resistance was significantly elevated at most time points during the 72 h of HDS in the freely hanging limbs but not the supported hindlimbs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) enable surgical repair of cardiovascular defects. However, neurological complications can result after both CPB and DHCA. We sought to investigate if 75 min of CPB or DHCA caused motor, cognitive or histological deficits in rats. Three groups were studied: DHCA, CPB, and sham. Rats in the DHCA group were subjected to 75 min DHCA at 15 degrees C, with a total CPB duration of 75 min. Rats in the CPB group were subjected to 75 min of normothermic CPB. Shams received the same anesthesia, cannulations and infusions. Motor function was assessed using beam testing on days 3-13. Cognitive performance was evaluated using Morris water maze tasks on days 7-13. Overall Performance Category (OPC) and Neurologic Deficit Score (NDS) were assessed daily. Histological Damage Score (HDS) was assessed in survivors on day 14. Sustained deficits on beam testing were seen only in the CPB group. Rats in the CPB and DHCA groups exhibited similar cognitive performance vs. sham. There were no differences in OPC or NDS between groups. Neuronal degeneration was present only in small foci in rats after DHCA (n=4/7). However, HDS was not different in individual brain regions or viscera between DHCA or CPB vs. sham. Surprisingly, CPB, but not DHCA was associated with motor deficits vs. sham, and no cognitive deficits were seen in either group vs. sham. Future studies with longer DHCA duration will be necessary to provide targets to assess novel preservation strategies.  相似文献   

11.
To investigate the effects of colchicine on left ventricular (LV) function and hypertrophy (LVH) of rats subjected to constriction of transverse aorta (TAoC), we evaluated SO (sham operated, vehicle; n = 25), SO-T (sham operated, colchicine 0.4 mg/kg body wt ip daily; n = 38), TAoC (vehicle; n = 37), and TAoC-T (TAoC, colchicine; n = 34) on the 2nd, 6th, and 15th day after surgery. Colchicine attenuated LVH of TAoC-T compared with TAoC rats, as evaluated by ratio between LV mass (LV(M)) and right ventricular mass, LV wall thickness, and average diameter of cardiac myocytes. Systolic gradient across TAoC ( approximately 45 mmHg), LV systolic pressure, LV end-diastolic pressure, and rate of LV pressure increase (+dP/dt) were comparable in TAoC-T and TAoC rats. However, the baseline and increases of LV systolic pressure-to-LV(M) and +dP/dt-to-LV(M) ratios induced by phenylephrine infusion were greater in TAoC-T and SO-T compared with SO rats. Baseline and increases of +dP/dt-to-LV(M) ratio were reduced in TAoC compared with SO rats. TAoC rats increased polymerized fraction of tubulin compared with SO, SO-T, and TAoC-T rats. Our results indicate that colchicine treatment reduced LVH to pressure overload but preserved LV function.  相似文献   

12.
Whole body vibration with resistive exercise is a promising countermeasure against some weightlessness-induced dysfunctions. Our objective was to study whether the combination of low-magnitude whole body vibration with a resistive exercise can prevent the cardiovascular deconditioning induced by a nonstrict 60-day head-down bed rest (Earth Star International Bed Rest Experiment Project). Fourteen healthy men participated in this study. We recorded electrocardiograms and blood pressure waves by means of a noninvasive beat-by-beat measurement system (Cardiospace, integrated by Centre National d'Etudes Spatiales and Astronaut Center of China) during an orthostatic test (20 min of 75-degree head-up tilt test) before and immediately after bed rest. We estimated heart rate, blood pressure, cardiac output, stroke volume, total peripheral resistance, baroreflex sensitivity, and heart rate variability. Low-magnitude whole body vibration with resistive exercise prevented an increase of the sympathetic index (reflecting the sympathovagal balance of cardiac autonomic control) and limited the decrease of the spontaneous baroreflex sensitivity induced by 60 days of head-down bed rest. However, this countermeasure had very little effect on cardiac hemodynamics and did not improve the orthostatic tolerance. This combined countermeasure did not efficiently prevent orthostatic intolerance but prevents changes in the autonomic nervous system associated with cardiovascular deconditioning. The underlying mechanisms remain hypothetical but might involve cutaneous and muscular mechanoreceptors.  相似文献   

13.
The cardiovascular function in space seems to be normal. However, abnormalities of cardiovascular responses have been found during lower body negative pressure suction in space. The etiology of the cardiovascular deconditioning in space is still unknown. A previous study showed, that short periods of head down tilt (HDT-6 degrees) induce changes in the spectral pattern of heart rate variabilty (HRV) and an increase in the sympathethic activation caused by orthostatic stress. The aim of this study was to test following hypotheses: 1. The dynamic of heart rate variability is different in the head down tilt and supine positions. 2. The application of lower body negative pressure (LBNP) during head down tilt induces similar heart rate variability patterns like the standing position. 3. After short term head down tilt the cardiovascular response to lower body negative pressure stressor is altered.  相似文献   

14.
Prolonged exposure to microgravity or bed rest produces cardiovascular deconditioning, which is characterized by reductions in plasma volume, alterations in autonomic function, and a predisposition toward orthostatic intolerance. Although the precise mechanisms have not been fully elucidated, it is possible that augmented cardiopulmonary reflexes contribute to some of these effects. The purpose of the present study was to test the hypothesis that sympathoinhibitory responses to volume expansion are enhanced in the hindlimb-unloaded (HU) rat, a model of cardiovascular deconditioning. Mean arterial blood pressure, heart rate, and renal sympathetic nerve activity (RSNA) responses to isotonic volume expansion (0.9% saline iv, 15% of plasma volume over 5 min) were examined in conscious HU (14 days) and control animals. Volume expansion produced decreases in RSNA in both groups; however, this effect was significantly greater in HU rats (-46 +/- 7 vs. -25 +/- 4% in controls). Animals instrumented for central venous pressure (CVP) did not exhibit differences in CVP responses to volume expansion. These data suggest that enhanced cardiopulmonary reflexes may be involved in the maintenance of reduced plasma volume and contribute to attenuated baroreflex-mediated sympathoexcitation after spaceflight or bed rest.  相似文献   

15.
Bed-rest deconditioning is suspected to reduce cardiac reserve, possibly by impairing autonomic function. Heart rate response in normal subjects reveals considerable variability, reflected by a relatively broadband interbeat interval power spectrum. A reduction in this autonomically modulated variability would be predicted to cause a narrowing of the spectrum. We retrospectively analyzed data from 10 aerobically conditioned men (age range 35-49 yr) who had undergone orthostatic tolerance testing with lower body negative pressure pre-bed rest and after 7-10 days of bed rest, while on placebo and after intravenous atropine. Spectra were derived by Fourier analysis of 128 interbeat interval data sets. Spectral power was estimated by computing the root-mean-square (rms) values (mean +/- SD) for the band encompassing the 2nd to 64th harmonics from subjects with a sufficient number of beats: placebo rms is 93 +/- 33 ms for pre-bed rest and 84 +/- 38 ms for bed rest (NS, n = 6); atropine rms is 63 +/- 24 ms for pre-bed rest and 40 +/- 23 ms for bed rest (P less than 0.01; n = 7). These data suggest that atropine "unmasks" a deconditioning effect of bed rest in athletic men, evidenced by a reduction in interbeat interval spectral power not apparent with placebo. Spectral analysis offers a useful means of quantitating the effects of bed-rest deconditioning and autonomic perturbations on cardiac dynamics.  相似文献   

16.
We have recently summarized our data concerning endurance exercise training and its effect on blood pressure regulation during lower body negative pressure (LBNP). We found that endurance trained (ET) subjects were less tolerant to LBNP than their untrained (UT) counterparts. This decreased tolerance to LBNP was linked to a fitness related adaptation in cardiac compliance, an attenuated cardiopulmonary reflex regulation of peripheral vasoconstriction and an attenuated aortic-cardiac reflex. More recently we have found that 15 days of bed rest deconditioning (a severe form of detraining) in UT subjects resulted in a more responsive aortic-cardiac reflex. In severe detraining investigations, spaceflight and bed rest deconditioning a reduction in total blood and plasma volume were the manifest physiological changes. Therefore, we postulate that the increased aortic-reflex responsiveness was a compensation for the blood and plasma volume losses associated with detraining. Subsequently, we hypothesized that a generalized reduction of the normal daily aerobic activities of a healthy, young adult population would produce a moderate reduction in total blood and plasma volume and an up-regulation of the reflex blood pressure regulatory mechanisms.  相似文献   

17.
In humans, multiparity (repeated pregnancy) is associated with increased risk of cardiovascular disease. In rats, multiparity increases the pressor response to phenylephrine and to acute stress, due in part to changes in tone of the splanchnic arterial vasculature. Given that the venous system also changes during pregnancy, we studied the effects of multiparity on venous tone and compliance. Cardiovascular responses to volume loading (2 ml/100 g body wt), and mean circulatory filling pressure (MCFP, an index of venomotor tone) were measured in conscious, repeatedly bred (RB), and age-matched virgin rats. In addition, passive compliance and venous reactivity of isolated mesenteric veins were measured by pressure myography. There was a greater increase in mean arterial pressure after volume loading in RB rats (+7.2 +/- 2.5 mmHg, n = 8) than virgin rats (-1.4 +/- 1.7 mmHg, n = 7) (P < 0.05). The increase in MCFP in response to norepinephrine (NE) was also greater in RB rats [half maximal effective dose (ED(50)) 3.1 +/- 0.5 nmol.kg(-1).min(-1), n = 6] than virgins (ED(50): 12.1 +/- 2.7 nmol.kg(-1).min(-1), n = 6) (P < 0.05). Pressure-induced changes in passive diameter were lower in isolated mesenteric veins from RB rats (29.3 +/- 1.8 microm/mmHg, n = 6) than from virgins (36.9 +/- 1.3 microm/mmHg, n = 6) (P < 0.05). Venous reactivity to NE in isolated veins was also greater in RB rats (EC(50): 2.68 +/- 0.37x10(-8) M, n = 5) than virgins (EC(50): 4.67 +/- 0.93 x 10(-8) M, n = 8). We conclude that repeated pregnancy induces a long-term reduction in splanchnic venous compliance and augments splanchnic venous reactivity and sympathetic tonic control of total body venous tone. This compromises the ability of the capacitance (venous) system to accommodate volume overloads and to buffer changes in cardiac preload.  相似文献   

18.
In response to reduced oxygen or nutrient supply, the fetus may redistribute cardiac output to conserve brain and heart growth, at the expense of the peripheral tissues; however, it is not known whether alterations in vascular function are maintained after birth or whether reduced fetal oxygen versus nutrient supply produces distinct effects. Using a pressure myograph, we examined isolated carotid and femoral artery responses to phenylephrine and endothelin-1 in neonatal rats, after either reduced maternal oxygen or global nutrient restriction during late gestation. Timed-pregnant Sprague-Dawley rats were randomly assigned to control (n = 10), hypoxia (12% O2, n = 9), or nutrient restriction (NR, 40% of control diet, n = 7) protocol and treated from day 15-21 of pregnancy. Pups were collected 3-12 h after birth. Neonatal weights (P < 0.001) and relative liver weights (P < 0.001) were lower in hypoxia and nutrient restriction treatments compared with control, while relative heart weights were greater in the hypoxia than in the control or nutrient restriction groups (P < 0.01). Constriction to phenylephrine was reduced in carotid arteries from the hypoxia and nutrient restriction groups compared with control (P < 0.001), while the femoral artery response was greater in hypoxia-treated neonates compared with control or nutrient-restricted neonates (P < 0.01). Only the hypoxia reduced carotid responses to endothelin-1, while no differences were observed in the endothelin-1 responses in femoral arteries. Maternal hypoxia and maternal nutrient restriction produced distinct effects on heart growth and neonatal vascular function, suggesting that regional changes in cardiovascular function after poor fetal growth are dependent on the nature of the insult in utero.  相似文献   

19.
The efficacy of anabolic steroid treatment [0.3 or 0.9 mg nandrolone decanoate (Deca-Durabolin) per day] was examined in the context of sparing rodent fast-twitch plantaris and slow-twitch soleus muscle weight, sparing subcellular protein, and altering isomyosin expression in response to hindlimb suspension. Female rats were assigned to four groups (7 rats/group for 6 wk): 1) normal control (NC), 2) normal steroid (NS), 3) normal suspension (N-SUS), and 4) suspension steroid (SUS-S). Compared with control values for the plantaris and soleus muscles, suspension induced 1) smaller body and muscle weight (P less than 0.05), 2) losses in myofibril content (mg/muscle, P less than 0.05), and 3) shifts in the relative expression (expressed as %of total isomyosin) of isomyosins which favored lesser slow myosin and greater fast myosin isotypes (P less than 0.05). Steroid treatment of suspended animals (SUS-S vs. N-SUS) partially spared body and muscle weight (P less than 0.05) and spared plantaris but not soleus myofibril content (mg/muscle, P less than 0.05). However, steroid treatment did not modify the isomyosin pattern induced by suspension. In normal rats (NS vs. NC), steroid treatment enhanced body and plantaris muscle weight but not soleus weight (P less than 0.05) and did not alter isomyosin expression in either muscle type. Collectively these data suggest that in young female rats anabolic steroids 1) enhance the body weight and the weight of a fast-twitch ankle extensor in normal rats, 2) ameliorate the loss in body weight, fast-twitch muscle weight and protein content and slow-twitch muscle weight associated with hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Recent studies have shown that nitric oxide (NO) biosynthesis increases in pregnancy and that inhibition of nitric oxide synthase (NOS) induces some pathological processes characteristic of preeclampsia. The current project sought to study the effect of the NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microg x min(-1), sc for 7 days) on plasma volume, plasma atrial natriuretic factor (ANF), plasma endothelin-1 (ET), and plasma renin activity (PRA) during gestation in conscious rats. NOS inhibition caused mean arterial pressure to increase in both virgin and 21-day pregnant rats. Plasma volume fell in the pregnant rats [L-NAME, 4.5 +/- 0.3 mL x 100 g(-1) body wt. (n = 7) vs. D-NAME, 6.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 10); P < 0.05] but not in the virgin rats [L-NAME, 4.3 +/- 0.1 mL x 100 g(-1) body wt. (n = 6) vs. D-NAME, 4.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 8)]. There was no effect of NOS inhibition on plasma ANF levels or PRA in either the virgin or pregnant rats. However, L-NAME did decrease plasma ET levels in the pregnant rats [L-NAME, 19.6 +/- 1.6 pg x mL(-1) (n = 8) vs. D-NAME, 11.6 +/- 2.5 pg x mL(-1) (n = 9); P < 0.05]. Our results confirm that NO is involved in cardiovascular homeostasis in pregnancy; NOS inhibition selectively reduces plasma volume in pregnant rats, thus mimicking a major pathophysiological perturbation of preeclampsia. However, it does not induce the hormonal changes characteristic of preeclampsia, namely the decrease in PRA and increase in plasma ET and ANF levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号