首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ferrocytochrome c has been shown to bind two molecules of CO at pH 14. The second CO is thought to be bound only when the cytochrome c molecule is denatured, and once bound appears to be spectrally silent. Insolubilization of native cytochrome c prevents the binding of the second CO molecule. A scheme is proposed to explain these observations based on evidence from static titrations and flash-photolysis experiments, use of carboxymethyl cytochrome c and insoluble cytochrome c, and use of cyanide instead of CO as a ligand.  相似文献   

2.
Preferential binding of an unfolded protein to DsbA.   总被引:6,自引:0,他引:6       下载免费PDF全文
The oxidoreductase DsbA from the periplasm of escherichia coli introduces disulfide bonds into proteins at an extremely high rate. During oxidation, a mixed disulfide is formed between DsbA and the folding protein chain, and this covalent intermediate reacts very rapidly either to form the oxidized protein or to revert back to oxidized DsbA. To investigate its properties, a stable form of the intermediate was produced by reacting the C33A variant of DsbA with a variant of RNase T1. We find that in this stable mixed disulfide the conformational stability of the substrate protein is decreased by 5 kJ/mol, whereas the conformational stability of DsbA is increased by 5 kJ/mol. This reciprocal effect suggests strongly that DsbA interacts with the unfolded substrate protein not only by the covalent disulfide bond, but also by preferential non-covalent interactions. The existence of a polypeptide binding site explains why DsbA oxidizes protein substrates much more rapidly than small thiol compounds. Such a very fast reaction is probably important for protein folding in the periplasm, because the accessibility of the thiol groups for DsbA can decrease rapidly when newly exported polypeptide chains begin to fold.  相似文献   

3.
We have measured the effect of temperature and denaturant concentration on the rate of intrachain diffusion in an unfolded protein. After photodissociating a ligand from the heme iron of unfolded horse cytochrome c, we use transient optical absorption spectroscopy to measure the time scale of the diffusive motions that bring the heme, located at His18, into contact with its native ligand, Met80. Measuring the rate at which this 62 residue intrachain loop forms under both folding and unfolding conditions, we find a significant effect of denaturant on the chain dynamics. The diffusion of the chain accelerates as denaturant concentration decreases, with the contact formation rate approaching a value near approximately 6x10(5) s(-1) in the absence of denaturant. This result agrees well with an extrapolation from recent loop formation measurements in short synthetic peptides. The temperature dependence of the rate of contact formation indicates an Arrhenius activation barrier, Ea approximately 20 kJ/mol, at high denaturant concentrations, comparable to what is expected from solvent viscosity effects alone. Although Ea increases by several kBT as denaturant concentration decreases, the overall rate of diffusion nevertheless increases. These results indicate that inter-residue energetic interactions do not control conformational diffusion in unfolded states, even under folding conditions.  相似文献   

4.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

5.
R D Guiles  V J Basus  I D Kuntz  L Waskell 《Biochemistry》1992,31(46):11365-11375
15N and 1H resonance assignments for backbone and side-chain resonances of both equilibrium forms of rat ferrocytochrome b5 have been obtained, using 15N-1H heteronuclear correlation methods employing globally 15N-labeled protein. Unlike other cytochrome b5 species assigned to date (Guiles et al., 1990) the rat cytochrome exists as an equilibrium distribution of conformers in nearly equal abundance (Lee et al., 1990). The ratio of conformers present in all other species variants is approximately 1:9. More than 40% of all residues of the rat protein exhibit NMR-detectable heterogeneity due to the 180 degrees rotation of the heme about the alpha, gamma-meso axis. NOESY and HOHAHA relayed 15N-1H double-DEPT heteronuclear correlation methods were an indispensible tool for the deconvolution of a system with this level of heterogeneity. Differences in the resonance assignments between the two equilibrium conformers were found to be as great as differences between species variants we have previously reported. On the basis of the magnitude and extent of the observed chemical shift differences and specific NOESY connectivities observed in the two isomers, we believe the two equilibrium conformers differ not only by a simple back-to-front flip of the heme but also by an additional rotation about an axis normal to the heme plane as has been previously suggested by Pochapsky et al. (1990). A short segment of the protein at the N-terminus could not be assigned, presumably due to rapid exchange of solvent-accessible amide protons in this disordered segment of the protein. Assignments for 93 of the 98 residues of this 12-kDa protein have been obtained.  相似文献   

6.
Using fast flash photolysis, we have measured the binding of CO to carboxymethylated cytochrome c and to heme c octapeptide as a function of temperature (5 degrees-350 degreesK) over an extended time range (100 ns(-1) ks). Experiments used a microsecond dye laser (lambda = 540 nm), and a mode-locked frequency-doubled Nd-glass laser (lambda = 530 nm). At low temperatures (5 degrees-120 degreesK) the rebinding exhibits two components. The slower component (I) is nonexponential in time and has an optical spectrum corresponding to rebiding from an S = 2, CO-free deoxy state. The fast component (I*) is exponential in time with a lifetime shorter than 10 mus and an optical spectrum different from the slow component. In myoglobin and the separated alpha and beta chains of hemoglobin, only process I is visible. The optical absorption spectrum of I* and its time dependence suggest that it may correspond to recombination from an excited state in which the iron has not yet moved out of the heme plane. The temperature dependences of both processes have been measured. Both occur via quantum mechanical tunneling at the lowest temperatures and via over-the-barrier motion at higher temperatures.  相似文献   

7.
8.
The binding of carbonmonoxyheme to semi-alpha-hemoglobin and to an apohemoglobin control was investigated using stopped-flow techniques in 0.025 M potassium phosphate buffer, pH 7 and 10 degrees C. The resultant second order kinetic data were analyzed by the classical model which assumes the existence of an intermediate complex which either redissociates to reactants or undergoes an irreversible conversion to form hemoglobin. The rate constants for the latter unimolecular process were apparently not experimentally different for semi-alpha-hemoglobin and apohemoglobin (360 ( +/- 100) s-1 and 480 ( +/- 60) s-1, respectively). However, the equilibrium dissociation constant for the intermediate of semi-alpha-hemoglobin (Kd = 9.3 ( +/- 2.6) micromolar) was approximately two fold greater than that of apohemoglobin (Kd = 4.1 ( +/- 0.5) micromolar). The reduced stability of the semi-alpha-hemoglobin complex was postulated to be due to the lower affinity of the beta pocket for heme. The studies reported here address the possible role of semi-alpha-hemoglobin as an intermediate in the assembly of hemoglobin in vivo.  相似文献   

9.
Structure and heme environment of ferrocytochrome c553 from 1H NMR studies   总被引:1,自引:0,他引:1  
Cytochrome c553 is a photosynthetic electron transport protein found in algae and cyanobacteria. We have purified cytochromes c553 from five cyanobacteria and studied the structures of the ferrocytochromes by 1H NMR spectroscopy at 360 and 470 MHz. Using standard NMR techniques and by comparing the amino acid sequences of four cytochromes c553 with their 1H NMR spectra, we have assigned in the spectrum of the Aphanizomenon flos-aquae protein 18 resonances to specific amino acid residues and 12 resonances to specific heme protons. Steady state and truncated driven nuclear Overhauser enhancement experiments indicate that a tyrosine and methionine are located near pyrrole ring IV of the heme and that a phenylalanine ring is near the heme alpha-mesoproton. The general folding of the cytochrome c553 protein backbone appears to resemble that of Pseudomonas aeruginosa cytochrome c551, but the chirality of the cytochrome c553 axial methine sulfur is R, the same as that of horse heart cytochrome c.  相似文献   

10.
A subunit which retains heme has been isolated and purified up to a homogenous form on polyacrylamide gel electrophoretic column in the presence of sodium dodecyl sulfate and β-mercaptoethanol from cytochrome oxidase. The separation of the subunit does not rely on any detergent except cholate used in the preparation of cytochrome oxidase. The purification involves a reaction with pyridine, pH precipitation, and DEAE-cellulose column chromatography. The purified subunit has a molecular weight of 11,600 daltons and contains more than 40 nmol Fe per mg protein; the lower iron content than the calculated value is apparently due to the loss of heme a in the course of the purification. The subunit is freely soluble in aqueous solution at neutral pH to give a dark green color. Spectral properties and amino acid composition of this subunit have been studied.  相似文献   

11.
12.
We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single "heme-regulatory motif", HRM, and plays a key role in the iron homeostasis of a nitrogen-fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where (29)Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside of the HRM. The Raman line for the Fe-S stretching mode observed at 333 cm(-1) unambiguously confirmed heme binding to Cys. The lower frequency of the Fe-S stretching mode corresponds to the weaker Fe-S bond, and the broad Raman line of the Fe-S bond suggests multiple configurations of heme binding. These structural characteristics are definitely different from those of typical hemoproteins. The unusual heme binding in Irr was also evident in the EPR spectra. The characteristic g-values of the 5-coordinate Cys-ligated heme and 6-coordinate His/His-ligated heme were observed, while the multiple configurations of heme binding were also confirmed. Such multiple heme configurations are not encountered for typical hemoproteins where the heme functions as the active center. Therefore, we conclude that heme binding to HRM in the heme-regulated protein, Irr, is quite different from that in conventional hemoproteins but characteristic of heme-regulated proteins using heme as the signaling molecule.  相似文献   

13.
M Santimone 《Biochimie》1975,57(1):91-96
The oxidation of ferrocytochrome c catalysed by highly purified horse-radish isoperoxidase P2 was studied kinetically. To take into account the low turnover number of the enzyme and the tendency to autocatalytic oxidation of ferrocytochrome c, experimental conditions were used which prevented us from using the steady-state treatment. According to kinetic results reported by several authors, a kinetic scheme involving a ternary complex between the enzyme and the substrates was postulated and simulated on a hybrid computer. By assuming that the interaction of peroxidase with hydrogen peroxide is much faster than the interaction with ferrocytochrome c, one can verify that this scheme explains the fact that initial velocity does not vary in relation to the hydrogen peroxide concentration and that a sudden change of slope occurs in the kinetic curve for an initial hydrogen peroxide/ferrocytochrome c ratio lower than 0.5.  相似文献   

14.
Structure of rat gamma-tubulin and its binding to HP33.   总被引:1,自引:0,他引:1  
Gamma-tubulin is localized at the microtubule organizing center and is thought to participate in the organizing of the microtubule network. In this study, we isolated a cDNA of rat gamma-tubulin. The rat gamma-tubulin cDNA encoded 451 amino acids, the same number as that of its counterpart in other vertebrates, and its structure was found to be highly conserved in vertebrates. In a previous work, we identified HP33 (hepatocarcinogenesis- and hepatocellular proliferation-related 33-kDa protein) that was localized at the centrosome of hepatic cells and that exhibited MAP-like activity. In vitro GST pull-down assay using highly purified recombinant HP33 and bacterially expressed gamma-tubulin demonstrated that HP33 bound to gamma-tubulin directly. These results suggest that HP33 is localized at the centrosome via association with both the microtubule and its minus end-specific component, gamma-tubulin.  相似文献   

15.
P Argos  M G Rossmann 《Biochemistry》1979,18(22):4951-4960
Of the 82 three dimensionally characterized residues of cytochrome c551, 49 are found to be structurally and topologically equivalent to the globin fold and 41 are equivalent to the cytochrome b5 fold, with a respective root mean square separation of 3.5 and 4.9 A between equivalenced Calpha atoms. The common fold represents a central heme binding core, corresponding to the middle exon of certain globin genes. After superposition of the protein folds, the heme irons are found to be separated by 5.4 and 1.6 A, while their heme normals are inclined by 6 degrees and 32 degrees, respectively. Furthermore, the heme "face", determined by the asymmetric attachment of the vinyl and propionyl side chains, is directed similarly in all three heme proteins. The heme itself is rotated by 72 degrees and 116 degrees about its normal, respectively. The minimum base change per codon for the three pairwise comparisons corresponds to the expected value of random sequence comparisons. While all three heme proteins may have diverged from a common ancestor, their similarity may have arisen from the requirements of heme binding or the utilization of a particularly stable fold. Known structures within commonly accepted divergent families were superimposed in order to discriminate better between convergence and divergence. Minimum base changes per codon, number of deletions and insertions, percentage of equivalenced residues, precision of heme superposition, and root mean square separation of equivalenced Calpha atoms were tested as measures of evolutionary relationships.  相似文献   

16.
The microsomal (Mc) and mitochondrial (OM) isoforms of mammalian cytochrome b5 are the products of different genes, which likely arose via duplication of a primordial gene and subsequent functional divergence. Despite sharing essentially identical folds, heme-polypeptide interactions are stronger in OM b5s than in Mc b5s due to the presence of two conserved patches of hydrophobic amino acid side chains in the OM heme binding pockets. This is of fundamental interest in terms of understanding heme protein structure-function relationships, because stronger heme-polypeptide interactions in OM b5s in comparison to Mc b5s may represent a key source of their more negative reduction potentials. Herein we provide evidence that interactions amongst the amino acid side chains contributing to the hydrophobic patches in rat OM (rOM) b5 persist when heme is removed, rendering the empty heme binding pocket of rOM apo-b5 more compact and less conformationally dynamic than that in bovine Mc (bMc) apo-b5. This may contribute to the stronger heme binding by OM apo-b5 by reducing the entropic penalty associated with polypeptide folding. We also show that when bMc apo-b5 unfolds it adopts a structure that is more compact and contains greater nonrandom secondary structure content than unfolded rOM apo-b5. We propose that a more robust beta-sheet in Mc apo-b5s compensates for the absence of the hydrophobic packing interactions that stabilize the heme binding pocket in OM apo-b5s.  相似文献   

17.
The hyperfine shifted proton NMR spectrum of isoenzyme c of horseradish peroxidase indicated that one calcium ion is essential to the enzyme in maintaining the protein structure in the heme vicinity.  相似文献   

18.
Dynamics of ligand binding to heme proteins   总被引:23,自引:0,他引:23  
  相似文献   

19.
Of the 85 three-dimensionally characterized residues of cytochrome b5, 51 are structurally and topologically equivalent to the globin fold. When these proteins have been superimposed, the heme irons are found to be less than 1.4 A separated and the heme normals are inclined by less than 9.5 degrees. Comparison of minimum base changes per codon between heme binding and NAD binding proteins are of the same order.  相似文献   

20.
Equilibrium constants for the binding of azide to the ferric heme c octapeptide in 50% ethylene glycol 50% buffer were measured spectrophotometrically. The equilibrium constant for azide binding at 20 degrees C and pH* 7.4 is 29.2, which is approximately 3 to 4 orders of magnitude lower than that observed for azide binding to various ferric hemeproteins. The equilibrium constant was indepent of pH* in the range from 7 to 8. Equilibrium constants at several temperatures exhibited an apparent van't Hoff relationship yielding thermodynamic values of delta H0 = -26,100 J/mol (-6240 cal/mol) and delta S0 = -61.5 J/0K mol (-14.7 e.u.). Comparison of these values to the values for the heme proteins enables one to explain the differences in equiliberium constants in terms of differences in the polarity of the heme environments. The results are consistent with the concept that the oxygen affinity of heme complexes increases with the polarity of the heme environment. The data also suggest that an increase in the polarity of the heme environment should result in a corresponding increase in the susceptibility of ferrous heme dioxygen complexes toward oxidation by the dioxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号